"test/pool/test_max_pool2d_fwd.cpp" did not exist on "2a261afcdfc2351dece8d872d413310ff1992988"
run_text_generation.py 13.6 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
"""Generate text using a vision language model."""
import glob
import json
import logging
import os
import sys
from collections import defaultdict
from functools import partial

# Add megatron to the path.
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir))
)

import numpy as np
import torch
from PIL import Image
from torchvision.transforms import Compose, Resize, ToPILImage
from train import add_multimodal_extra_args, get_image_token_count, model_provider

from megatron.inference.text_generation.api import generate_and_post_process
from megatron.inference.text_generation.forward_step import ForwardStep
from megatron.training import get_args, get_model, print_rank_0
from megatron.training.checkpointing import load_checkpoint
from megatron.training.initialize import initialize_megatron


def add_text_generation_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title='Vision language model text generation')

    group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.')
    group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.')
    group.add_argument("--top_k", type=int, default=0, help='Top k sampling.')
    group.add_argument(
        "--out-seq-length", type=int, default=1024, help='Length of the output generated text.'
    )
    group.add_argument("--output-path", type=str, required=True, help='Output file path')
    group.add_argument('--input-image-path', type=str, required=True, help="Input image directory")
    group.add_argument('--input-metadata-path', type=str, help="Input metadata path")
    group.add_argument(
        '--num-partitions', type=int, default=0, help="Number of partitions for inputs."
    )
    group.add_argument('--partition-id', type=int, default=0, help="Partition index")
    group.add_argument("--drop-vision-class-token", action="store_true", default=False)
    group.add_argument("--gt-path", type=str, help="Optional ground truth file")
    group.add_argument("--task", type=str, help="Generation task to run")

    # Add common multimodal arguments needed for e.g. building the model.
    parser = add_multimodal_extra_args(parser)

    return parser


def preprocess_image(target_h, target_w, img):
    """Example image preprocessing. Resizes input image to target size.

    Args:
        target_h (int): Target height in pixels.
        target_w (int): Target width in pixels
        img (np.array [h, w, c]): Input image in a numpy array.

    Returns:
        output_img (torch.Tensor [c, h, w]): Input image resized to target size.
    """
    # Imagenet's mean and std for normalization.
    pixel_mean = [123.675, 116.28, 103.53]
    pixel_std = [58.395, 57.12, 57.375]
    pixel_mean = torch.Tensor(pixel_mean).view(-1, 1, 1)
    pixel_std = torch.Tensor(pixel_std).view(-1, 1, 1)

    # Resize image considering ratio between input and target image sizes.
    img_h, img_w = img.shape[0], img.shape[1]
    ratio = float(max(target_h, target_w)) / max(img_h, img_w)

    scaled_h, scaled_w = int(img_h * ratio + 0.5), int(img_w * ratio + 0.5)

    image_transform = Compose(
        [ToPILImage(), Resize((scaled_h, scaled_w)), lambda x: x.convert("RGB")]
    )
    img = image_transform(img)

    # Normalize pixel values.
    img = (torch.Tensor(np.array(img)).permute(2, 0, 1) - pixel_mean) / pixel_std

    # Pad to target size.
    delta_h, delta_w = target_h - scaled_h, target_w - scaled_w
    output_img = torch.nn.functional.pad(img, (0, delta_w, 0, delta_h))

    return output_img


def _get_partition_bounds(total_num_samples, num_partitions, partition_id):
    samples_per_partition = total_num_samples // num_partitions
    return samples_per_partition * partition_id, samples_per_partition * (partition_id + 1)


def generate_samples(model):
    """Text generation using a trained vision language model."""
    args = get_args()

    images = []
    questions, answers = [], []
    samples, sample_ids = [], []

    if args.task in ("TextVQA", "VQAv2"):
        input_metadata_path = args.input_metadata_path

        if input_metadata_path.endswith(".json"):
            samples = json.load(open(input_metadata_path))
        elif input_metadata_path.endswith(".jsonl"):
            with open(input_metadata_path, 'r') as jsonl_file:
                json_list = list(jsonl_file)
                samples = [json.loads(json_str) for json_str in json_list]
        else:
            return NotImplementedError

        # Optionally, process only a subset of the input files.
        if args.num_partitions > 0:
            lb, ub = _get_partition_bounds(len(samples), args.num_partitions, args.partition_id)
            samples = samples[lb:ub]

        num_samples = len(samples)

        for i in range(len(samples)):
            sample = samples[i]

            img_file = "{}/{}".format(args.input_image_path, sample["image"])

            img_sample = np.array(Image.open(img_file))
            processed_img = preprocess_image(args.img_h, args.img_w, img_sample)
            images.append(processed_img.reshape(-1, 3, args.img_h, args.img_w))

            if args.task == "VQAv2":
                questions.append(sample["question"])
                answers.append(sample["answer"])
            elif args.task == 'TextVQA':
                questions.append(sample["text"])

            sample_ids.append(sample["question_id"])

            if len(images) == num_samples:
                break
    elif args.task == "captioning":
        image_files = sorted(glob.glob(args.input_image_path + "/*"))
        # Optionally, process only a subset of the input files.
        if args.num_partitions > 0:
            lb, ub = _get_partition_bounds(len(image_files), args.num_partitions, args.partition_id)
            image_files = image_files[lb:ub]

        num_samples = len(image_files)
        images = []

        # Run image preprocessing.
        for image_file in image_files:
            img = np.array(Image.open(image_file))
            img = preprocess_image(args.img_h, args.img_w, img)

            images.append(img.reshape(-1, 3, args.img_h, args.img_w))

            image_id = int(image_file.split("_")[-1].split(".")[0])
            sample_ids.append(image_id)

        # Load optional ground truth.
        gt_sample_id_to_captions = defaultdict(list)
        if args.gt_path:
            gts = json.load(open(args.gt_path))
            for gt in gts["annotations"]:
                gt_sample_id_to_captions[gt["image_id"]].append(gt['caption'])
    elif args.task == 'MMMU':
        # The following downloads the MMMU dataset from HuggingFace and uses the API from the MMMU github repo to run MMMU evaluation.
        import datasets

        from evaluation.MMMU.eval.utils.data_utils import (
            CAT_SHORT2LONG,
            construct_prompt,
            load_yaml,
            process_single_sample,
        )

        all_mmmu_datasets = []

        hf_datasets_cache = os.environ["HF_DATASETS_CACHE"]
        assert hf_datasets_cache != "", "Please set the environment variable HF_DATASETS_CACHE."

        for subject in CAT_SHORT2LONG.values():
            subject_dataset = datasets.load_dataset(
                "MMMU/MMMU", subject, split=datasets.Split.VALIDATION, cache_dir=hf_datasets_cache
            )
            all_mmmu_datasets.append(subject_dataset)

        dataset = datasets.concatenate_datasets(all_mmmu_datasets)

        # Optionally, process only a subset of the input files.
        start_idx = 0
        end_idx = len(dataset)
        if args.num_partitions > 0:
            start_idx, end_idx = _get_partition_bounds(
                len(dataset), args.num_partitions, args.partition_id
            )

        # Using the LLaVA config from the MMMU repo.
        config = load_yaml("evaluation/MMMU/eval/configs/llava1.5.yaml")
        for k, v in config.items():
            if isinstance(v, list):
                assert len(v) == 1, "only one value supported."
                config[k] = v[0]

        for idx in range(start_idx, end_idx):
            sample = dataset[idx]
            sample = process_single_sample(sample)
            sample = construct_prompt(sample, config)

            # Skip samples with no images or multiple images. Not supported yet.
            if "image" not in sample or "<image 2>" in sample['final_input_prompt']:
                continue

            img = np.array(sample['image'].convert("RGB"))
            img = preprocess_image(args.img_h, args.img_w, img)
            images.append(img.reshape(-1, 3, args.img_h, args.img_w))

            sample_ids.append(sample['id'])

            # TODO: Support different image positions.
            prompt = sample['final_input_prompt']
            prompt = prompt.replace("<image 1>", "")
            questions.append(prompt.strip())

            answers.append(sample['answer'])

            samples.append(sample)

        num_samples = len(samples)
    else:
        raise NotImplementedError("unsupported task")

    idx = 0
    while idx < num_samples:
        image = images[idx].cuda()
        sample_id = sample_ids[idx]

        if args.task == "captioning":
            prompt = "Give a short and clear explanation of the subsequent image.\n"
        elif args.task == "TextVQA":
            prompt = questions[idx]
        elif args.task == "VQAv2":
            prompt = questions[idx]
            prompt += "\nAnswer the question using a single word or phrase."
        elif args.task == "MMMU":
            prompt = questions[idx]

        forward_step = partial(VLMForwardStep, image, get_image_token_count())

        if torch.distributed.get_rank() == 0:
            resp_sentences, _, _, _ = generate_and_post_process(
                model,
                forward_step=forward_step,
                prompts=[prompt],
                tokens_to_generate=args.out_seq_length,
                return_output_log_probs=False,
                top_k_sampling=args.top_k,
                top_p_sampling=args.top_p,
                add_BOS=False,
                temperature=args.temperature,
                random_seed=123,
            )

            for prompt, generation in zip([prompt], resp_sentences):
                output = {
                    "sample_id": sample_id,
                    "prompt": prompt,
                }

                output_name = ""
                if args.task == "captioning":
                    output_name = "caption"
                elif args.task == "VQAv2":
                    output_name = "answer"
                elif args.task in ("TextVQA", "MMMU"):
                    output_name = "text"

                generated = generation[len(prompt) :]
                output[output_name] = generated

                if args.task == "captioning":
                    output["ground_truth"] = gt_sample_id_to_captions[sample_id]
                elif args.task == "VQAv2":
                    output["ground_truth"] = answers[idx]
                elif args.task == "MMMU":
                    sample = samples[idx]

                    prediction = generated
                    if sample["question_type"] == "multiple-choice":
                        from evaluation.MMMU.eval.utils.eval_utils import (
                            parse_multi_choice_response,
                        )

                        prediction = parse_multi_choice_response(
                            generated, sample["all_choices"], sample["index2ans"]
                        )

                    output["prediction"] = prediction

                print_rank_0(output)

                yield output
                idx += 1
        else:
            generate_and_post_process(model, forward_step=forward_step)

            idx += 1


def generate_and_write_samples(model):
    args = get_args()

    for output in generate_samples(model):
        if torch.distributed.get_rank() == 0:
            with open(args.output_path, 'a') as f:
                f.write(json.dumps(output) + "\n")


class VLMForwardStep(ForwardStep):
    def __init__(self, images, num_image_tokens, model, max_batch_size, max_sequence_length):
        super().__init__(model, max_batch_size, max_sequence_length + num_image_tokens)
        self._images = images

    def _forward(self, tokens, position_ids, attention_mask):
        return self.model(
            self._images,
            tokens,
            position_ids,
            attention_mask=None,
            inference_params=self.inference_params,
        )

    def __call__(self, tokens, position_ids, attention_mask):
        logits = super().__call__(tokens, position_ids, attention_mask)

        # On the first inference iteration, we compute image tokens.
        # Update the sequence length offset by the number of image tokens.
        num_tokens = tokens.size(1)
        if num_tokens > 1:
            self.inference_params.sequence_len_offset += self.inference_params.key_value_memory_dict[
                "image_tokens_count"
            ]

        return logits


def main():
    """Vision language model text generation."""

    logging.getLogger(__name__).warning("Models using pipeline parallelism are not supported yet.")

    initialize_megatron(extra_args_provider=add_text_generation_args)

    def wrapped_model_provider(pre_process, post_process):
        return model_provider(pre_process, post_process, parallel_output=False)

    # Set up model and load checkpoint.
    model = get_model(wrapped_model_provider, wrap_with_ddp=False)

    args = get_args()
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    model = model[0]
    model.eval()

    generate_and_write_samples(model)


if __name__ == "__main__":
    main()