clip_converter.py 5.82 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import argparse
import os

import clip
import torch


def convert(download_root, output_path, tensor_parallel_size, use_te_layernorm_linear):
    device = "cuda"

    model, _ = clip.load("ViT-L/14@336px", device=device, download_root=download_root)

    state_dict = model.state_dict()
    new_state_dicts = [{"model": dict()} for _ in range(tensor_parallel_size)]

    # Indices from mapping pytorch multihead attention to megatron.
    kv_channels = 64
    hidden_dim = 1024
    num_heads = 16
    indices = []
    for i in range(num_heads):
        lb = i * kv_channels
        ub = (i + 1) * kv_channels
        indices.append(torch.arange(lb, ub, dtype=torch.int))
        indices.append(torch.arange(hidden_dim + lb, hidden_dim + ub, dtype=torch.int))
        indices.append(torch.arange(2 * hidden_dim + lb, 2 * hidden_dim + ub, dtype=torch.int))

    indices = torch.cat(indices)

    for name, tensor in state_dict.items():
        # Skip text model.
        if "visual" not in name:
            continue

        # Skip final layers not used in our model.
        if name == "visual.proj" or "ln_post" in name:
            continue

        # Map parameter names to ones used in megatron.
        new_name = ""
        new_tensor = tensor
        if new_tensor.dtype == torch.float16:
            new_tensor = new_tensor.to(torch.float32)

        # This is used for chunking some tensors to target tensor parallel size.
        chunk_dim = None

        if "class_embedding" in name:
            new_name = "class_token"
            # Our model uses class token that is expanded to input dimensions already.
            new_tensor = new_tensor.expand(1, 1, -1)
        elif "positional_embedding" in name:
            new_name = "position_embeddings.weight"
        elif "conv1" in name:
            new_name = "conv1.weight"
        elif "ln_pre.weight" in name:
            new_name = "ln_pre.weight"
        elif "ln_pre.bias" in name:
            new_name = "ln_pre.bias"
        elif "transformer.resblocks" in name:
            layer_idx = name.split(".")[3]
            base = f"decoder.layers.{layer_idx}"

            if "attn.in_proj_weight" in name:
                new_name = f"{base}.self_attention.linear_qkv.weight"
                new_tensor = new_tensor[indices]
                chunk_dim = 0
            elif "attn.in_proj_bias" in name:
                new_name = f"{base}.self_attention.linear_qkv.bias"
                new_tensor = new_tensor[indices]
                chunk_dim = 0
            elif "attn.out_proj.weight" in name:
                new_name = f"{base}.self_attention.linear_proj.weight"
                chunk_dim = 1
            elif "attn.out_proj.bias" in name:
                new_name = f"{base}.self_attention.linear_proj.bias"
            elif "ln_1.weight" in name:
                new_name = f"{base}.input_layernorm.weight"
                if use_te_layernorm_linear:
                    new_name = f"{base}.self_attention.linear_qkv.layer_norm_weight"
            elif "ln_1.bias" in name:
                new_name = f"{base}.input_layernorm.bias"
                if use_te_layernorm_linear:
                    new_name = f"{base}.self_attention.linear_qkv.layer_norm_bias"
            elif "mlp.c_fc.weight" in name:
                new_name = f"{base}.mlp.linear_fc1.weight"
                chunk_dim = 0
            elif "mlp.c_fc.bias" in name:
                new_name = f"{base}.mlp.linear_fc1.bias"
                chunk_dim = 0
            elif "mlp.c_proj.weight" in name:
                new_name = f"{base}.mlp.linear_fc2.weight"
                chunk_dim = 1
            elif "mlp.c_proj.bias" in name:
                new_name = f"{base}.mlp.linear_fc2.bias"
            elif "ln_2.weight" in name:
                new_name = f"{base}.pre_mlp_layernorm.weight"
                if use_te_layernorm_linear:
                    new_name = f"{base}.mlp.linear_fc1.layer_norm_weight"
            elif "ln_2.bias" in name:
                new_name = f"{base}.pre_mlp_layernorm.bias"
                if use_te_layernorm_linear:
                    new_name = f"{base}.mlp.linear_fc1.layer_norm_bias"

        assert new_name != "", f"unexpected layer name {name}"

        if chunk_dim is None:
            new_tensors = [new_tensor for _ in range(tensor_parallel_size)]
        else:
            new_tensors = torch.chunk(new_tensor, tensor_parallel_size, dim=chunk_dim)

        for i in range(tensor_parallel_size):
            # chunk() creates a view of a bigger tensor. clone() is used here to avoid excessive storage.
            new_state_dicts[i]["model"][new_name] = new_tensors[i].clone()

    for i in range(tensor_parallel_size):
        output_path_tp = os.path.join(output_path, f"state_dict_tp_{i}.pt")
        torch.save(new_state_dicts[i], output_path_tp)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="""
Convert OpenAI CLIP VIT weights to megatron format.


Example usage:
python clip_converter.py --download-root /some/download/folder --output /some/output/folder --tensor-parallel-size 4
""",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )

    parser.add_argument(
        "--download-root", type=str, required=True, help="Download folder for OpenAI CLIP weights",
    )
    parser.add_argument(
        "--output", type=str, required=True, help="output directory for megatron state dict file(s)"
    )
    parser.add_argument(
        "--tensor-parallel-size", type=int, default=1, help="model tensor parallel size",
    )
    parser.add_argument(
        "--use-te-layernorm-linear",
        action="store_true",
        help="Use Transformer Engine's LayerNormLinear",
    )

    args = parser.parse_args()

    convert(
        args.download_root, args.output, args.tensor_parallel_size, args.use_te_layernorm_linear
    )

    print("done.")