train_gpt3_345M_distributed.sh 1.99 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/bin/bash

# Runs the "175B" parameter model

export CUDA_DEVICE_MAX_CONNECTIONS=1

GPUS_PER_NODE=1 #8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NUM_NODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NUM_NODES))

CHECKPOINT_PATH=./tmp #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp  #$2 #<Specify path>
#VOCAB_FILE=$3 #<Specify path to file>/gpt2-vocab.json
#MERGE_FILE=$4 #<Specify path to file>/gpt2-merges.txt
DATA_PATH="/root/megatron-llama/dataset/my-llama_text_document" #<Specify path and file prefix>_text_document
TOKENIZER_PATH="/root/megatron-llama/tokenizer.model"

DISTRIBUTED_ARGS=(
    --nproc_per_node $GPUS_PER_NODE 
    --nnodes $NUM_NODES 
    --master_addr $MASTER_ADDR 
    --master_port $MASTER_PORT
)

GPT_MODEL_ARGS=(
    --num-layers 12 
    --hidden-size 512 
    --num-attention-heads 8
    --seq-length 2048 
    --max-position-embeddings 2048 
)

TRAINING_ARGS=(
    --transformer-impl local
    --use-legacy-models 
    --micro-batch-size 1 
    --global-batch-size 60 
    --train-iters 50 
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --fp16
    --lr 6.0e-5 
    --lr-decay-style cosine 
    --min-lr 6.0e-6
    --lr-warmup-fraction .001 
    --lr-decay-iters 20 
)

MODEL_PARALLEL_ARGS=(
	--tensor-model-parallel-size 1 
	--pipeline-model-parallel-size 1 
)

DATA_ARGS=(
    --data-path $DATA_PATH 
    --split 949,50,1
    --untie-embeddings-and-output-weights 
     --position-embedding-type rope
    --tokenizer-model $TOKENIZER_PATH 
    --tokenizer-type GPTSentencePieceTokenizer
)

EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --save-interval 10000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH 
    --load $CHECKPOINT_PATH 
    --eval-iters 10
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)

torchrun ${DISTRIBUTED_ARGS[@]} pretrain_gpt.py \
    ${GPT_MODEL_ARGS[@]} \
    ${TRAINING_ARGS[@]} \
    ${MODEL_PARALLEL_ARGS[@]} \
    ${DATA_ARGS[@]} \
    ${EVAL_AND_LOGGING_ARGS[@]}