Commit 523ec9cc authored by wangsen's avatar wangsen
Browse files

all

parents
Pipeline #1668 failed with stages
in 0 seconds
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""
This module provides an async utilities which allow to start
a checkpoint save process in the background.
"""
import logging
from collections import deque
from time import time
from typing import Callable, List, NamedTuple, Optional, Tuple
import torch
from torch import multiprocessing as mp
logger = logging.getLogger(__name__)
class AsyncRequest(NamedTuple):
""" Represents an async request that needs to be scheduled for execution.
Args:
async_fn (Callable, optional): async function to call. None represents noop.
async_fn_args (Tuple): args to pass to `async_fn`.
finalize_fns (List[Callable]): list of functions to call to finalize the request.
These functions will be called synchronously after `async_fn` is done
*on all ranks*.
"""
async_fn: Optional[Callable]
async_fn_args: Tuple
finalize_fns: List[Callable]
is_frozen: bool = False
def add_finalize_fn(self, fn: Callable) -> None:
""" Adds a new finalize function to the request.
Args:
fn (Callable): function to add to the async request. This function
will be called *after* existing finalization functions.
Returns:
None
"""
if self.is_frozen:
raise RuntimeError('Cannot add finalization functions to a frozen AsyncRequest')
self.finalize_fns.append(fn)
def execute_sync(self) -> None:
""" Helper to synchronously execute the request.
This logic is equivalent to what should happen in case of the async call.
"""
if self.async_fn is not None:
self.async_fn(*self.async_fn_args)
torch.distributed.barrier()
for finalize_fn in self.finalize_fns:
finalize_fn()
def freeze(self) -> 'AsyncRequest':
""" Freezes the async request, disallowing adding new finalization functions.
Returns:
AsyncRequest: new async request with all same fields except for the
`is_frozen` flag.
"""
return self._replace(is_frozen=True)
class DistributedAsyncCaller:
""" Wrapper around mp.Process that ensures correct semantic of distributed finalization.
Starts process asynchronously and allows checking if all processes on all ranks are done.
"""
def __init__(self):
self.process: Optional[mp.Process] = None
self.start_time: Optional[float] = None
def schedule_async_call(self, async_fn: Optional[Callable], save_args: Tuple,) -> None:
""" Spawn a process with `async_fn` as the target.
This method must be called on all ranks.
Args:
async_fn (Callable, optional): async function to call. If None,
no process will be started.
save_args (Tuple): async function args.
"""
if async_fn is None:
return # nothing to do
torch.cuda.synchronize()
ctx = mp.get_context('fork')
self.start_time = time()
self.process = ctx.Process(target=async_fn, args=save_args,)
self.process.start()
def is_current_async_call_done(self, blocking=False) -> bool:
""" Check if async save is finished on all ranks.
For semantic correctness, requires rank synchronization in each check.
This method must be called on all ranks.
Args:
blocking (bool, optional): if True, will wait until the call is done
on all ranks. Otherwise, returns immediately if at least one rank
is still active. Defaults to False.
Returns:
bool: True if all ranks are done (immediately of after active wait
if `blocking` is True), False if at least one rank is still active.
"""
# The following takes the same overhead as torch.distributed.barrier (single integer all-reduce)
is_alive = int(self.process.is_alive()) if self.process is not None else 0
ten = torch.tensor([is_alive], dtype=torch.int, device=torch.cuda.current_device())
logger.debug(
f"rank: {torch.distributed.get_rank()}, DistributedAsyncCaller is_alive: {is_alive}"
)
torch.distributed.all_reduce(ten)
if ten[0] > 0 and not blocking:
return False
else:
if self.process is not None:
logger.debug(f"rank: {torch.distributed.get_rank()}, joining self.process")
self.process.join()
self.process = None
logger.debug(
f"DistributedAsyncCaller: Async process join finished after {time() - self.start_time:.2f}s from forking"
)
self.start_time = None
return True
class _ActiveAsyncRequest(NamedTuple):
""" Helper to represent an active async call.
Args:
idx (int): index of the call (starting from 0)
async_caller (DistributedAsyncCaller): async caller instance that represents
the async process handling the async request
async_request (AsyncRequest): async request that is being called
"""
idx: int
async_caller: DistributedAsyncCaller
async_request: AsyncRequest
class AsyncCallsQueue:
""" Manages a queue of async calls.
Allows adding a new async call with `schedule_async_request` and finalizing
active calls with `maybe_finalize_async_calls`.
"""
def __init__(self):
self.async_calls: deque[_ActiveAsyncRequest] = deque([])
self.call_idx: int = -1
def schedule_async_request(self, async_request: AsyncRequest) -> int:
""" Start a new async call and add it to a queue of active async calls.
This method must be called on all ranks.
Args:
async_request (AsyncRequest): async request to start.
Returns:
int: index of the async call that was started.
This can help the user keep track of the async calls.
"""
self.call_idx += 1
async_caller = DistributedAsyncCaller()
async_request = async_request.freeze()
async_caller.schedule_async_call(async_request.async_fn, async_request.async_fn_args)
self.async_calls.append(_ActiveAsyncRequest(self.call_idx, async_caller, async_request))
return self.call_idx
def maybe_finalize_async_calls(self, blocking=False) -> List[int]:
""" Finalizes all available calls.
This method must be called on all ranks.
Args:
blocking (bool, optional): if True, will wait until all active requests
are done. Otherwise, finalizes only the async request that already
finished. Defaults to False.
Returns:
List[int]: list of indices (as returned by `schedule_async_request`)
of async calls that have been successfully finalized.
"""
call_idx_finalized = []
while self.async_calls:
next_async_done = self.async_calls[0].async_caller.is_current_async_call_done(blocking)
if not next_async_done:
break
call_idx, _, async_request = self.async_calls.popleft()
for finalize_fn in async_request.finalize_fns:
finalize_fn()
ten = torch.tensor([call_idx], dtype=torch.int, device=torch.cuda.current_device())
torch.distributed.all_reduce(ten, op=torch.distributed.ReduceOp.MAX)
assert (
ten.item() == call_idx
), 'Unmatched async calls. That probably means not all ranks are participating in async finalization'
call_idx_finalized.append(call_idx)
return call_idx_finalized
def get_num_unfinalized_calls(self):
""" Get the number of active async calls. """
return len(self.async_calls)
def close(self):
""" Finalize all calls upon closing. """
self.maybe_finalize_async_calls(blocking=True)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Strategies base interfaces. """
from abc import ABC, abstractmethod
from collections import defaultdict
from enum import Enum
from pathlib import Path
from ..mapping import CheckpointingException, ShardedStateDict, StateDict
from .async_utils import AsyncRequest
class StrategyAction(Enum):
LOAD_COMMON = 'load_common'
LOAD_SHARDED = 'load_sharded'
SAVE_COMMON = 'save_common'
SAVE_SHARDED = 'save_sharded'
default_strategies = defaultdict(dict)
def get_default_strategy(action: StrategyAction, backend: str, version: int):
""" Retrieves a default strategy for a given action, backend and version. """
try:
if backend == 'zarr':
error_hint = ' Please install `zarr` and `tensorstore<=0.1.45` packages'
from .tensorstore import _import_trigger
from .zarr import _import_trigger
elif backend == 'torch_dist':
error_hint = ' Please use PyTorch version >=2.1'
from .torch import _import_trigger
except ImportError as e:
raise CheckpointingException(
f'Cannot import a default strategy for: {(action.value, backend, version)}. Error: {e}. Hint: {error_hint}'
) from e
try:
return default_strategies[action.value][(backend, version)]
except KeyError as e:
raise CheckpointingException(
f'Cannot find a default strategy for: {(action.value, backend, version)}'
) from e
class LoadStrategyBase(ABC):
""" Base class for a load strategy. Requires implementing checks for compatibility with a given checkpoint version. """
@abstractmethod
def check_backend_compatibility(self, loaded_version):
raise NotImplementedError
@abstractmethod
def check_version_compatibility(self, loaded_version):
raise NotImplementedError
@property
def can_handle_sharded_objects(self):
""" Returns whether or not this strategy can handle loading ShardedObjects. """
return False
class SaveStrategyBase(ABC):
""" Base class for a save strategy. Requires defining a backend type and version of the saved format. """
def __init__(self, backend: str, version: int):
self.backend = backend
self.version = version
@property
def can_handle_sharded_objects(self):
""" Returns whether or not this strategy can handle saving ShardedObjects. """
return False
def __str__(self):
return f'{self.__class__.__name__}({self.backend}, {self.version})'
class LoadCommonStrategy(LoadStrategyBase):
""" Load strategy for common (non-sharded) objects """
@abstractmethod
def load(self, checkpoint_dir: Path):
raise NotImplementedError
class LoadShardedStrategy(LoadStrategyBase):
""" Load strategy for sharded tensors """
@abstractmethod
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
raise NotImplementedError
@abstractmethod
def load_tensors_metadata(self, checkpoint_dir: Path):
"""Load tensors metadata from the checkpoint.
Returns a dictionary similar to a sharded state dict, but note that
the dictionary keys are simply ShardedTensor keys (contrary to the
actual sharded state dicts where keys correspond to state dict keys).
Dict values are ShardedTensors without any sharding (so, the only useful
information is tensors global shape and dtype).
"""
raise NotImplementedError(
f'{self.__class__.__name__} doesnt allow loading only sharded metadata'
)
class SaveCommonStrategy(SaveStrategyBase):
""" Save strategy for common (non-sharded) objects """
@abstractmethod
def save(self, common_state_dict: StateDict, checkpoint_dir: Path):
raise NotImplementedError
class SaveShardedStrategy(SaveStrategyBase):
""" Save strategy for sharded tensors """
@abstractmethod
def save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
raise NotImplementedError
class AsyncSaveShardedStrategy(SaveShardedStrategy):
""" Save strategy suitable for async save. """
@abstractmethod
def async_save(
self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path
) -> AsyncRequest:
""" Perform preparation and return an AsyncRequest to the external caller.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to save
checkpoint_dir (Path): checkpoint target directory
Returns:
AsyncRequest: represents the async save function and finalization function.
It is the caller responsibility to actually schedule the async save.
"""
raise NotImplementedError
def save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
""" Each async strategy can be trivially used as a sync strategy. """
async_request = self.async_save(sharded_state_dict, checkpoint_dir)
async_request.execute_sync()
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
""" Storage writer for PyT Distributed format allowing asynchronous save. """
import logging
import os
from itertools import chain
from pathlib import Path
from time import time
from typing import Callable, Dict, List, Optional, Tuple
import psutil
import torch
from torch import multiprocessing as mp
from torch.distributed.checkpoint import FileSystemWriter
from torch.distributed.checkpoint.filesystem import DEFAULT_SUFFIX, _StoragePrefix, _write_item
from torch.distributed.checkpoint.planner import SavePlan, SavePlanner, WriteItem, WriteItemType
from torch.distributed.checkpoint.storage import WriteResult
from torch.futures import Future
logger = logging.getLogger(__name__)
WriteBucket = Tuple[Path, str, Tuple[list, list]] # represents writes to a single file
class FileSystemWriterAsync(FileSystemWriter):
"""
Async-enabled implementation of FileSystemWriter using file IO.
This class doesn't spawn the async process itself, relies on the external async mechanism.
Flow:
1. Call `write_data`
2. Externally start async process with `get_save_function_and_args` function and args
3. The async function to call is `writer_proxy_func` which calls
`write_preloaded_data` in multiple processes
After saving is finalized on all ranks:
4. Call `super().finish` with the results gathered in `self.writer_result`
Note that step (3) above can also be called synchronously.
Currently, it's assumed that a separate writer is created for each ckpt save
(intermediate state is stored as writer attributes).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if not self.single_file_per_rank:
raise NotImplementedError(
'single_file_per_rank flag not supported for FileSystemWriterAsync'
)
# Intermediate state between preparation and finalization
self.write_buckets: Optional[List[WriteBucket]] = None
self.write_results: Optional[Dict[int, List[WriteResult]]] = None
def prepare_write_data(self, plan: SavePlan, planner: SavePlanner) -> None:
"""
First stage of async saving. Copy data to CPU and plan the local saving.
Args:
plan (SavePlan): save plan generated by the PyT Distributed compatible planner
planner (SavePlanner): save planner used to resolve the bytes and tensor data
Returns: None, but stores the save plan in `self.write_buckets`
"""
storage_plan: _StoragePrefix = plan.storage_data
start = time()
logger.debug(f"thread_count: {self.thread_count}, time: {start}")
item_buckets = _split_by_size_and_type(self.thread_count, plan.items)
logger.debug(f"bucket_prep, time: {time() - start}")
start = time()
# move tensors from GPU to CPU before starting async writing
# We do D2H synchronously for now
file_count = 0
def gen_file():
nonlocal file_count
file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
file_count += 1
return file_name
# Prepare bytes / tensor data in each bucket, which will be assigned to each writer process
self.write_buckets = []
for bucket in item_buckets:
bytes_data = [
(item, planner.resolve_data(item))
for item in bucket
if item.type == WriteItemType.BYTE_IO
]
tensor_data = [
(item, planner.resolve_data(item).detach().to("cpu", non_blocking=True))
for item in bucket
if item.type != WriteItemType.BYTE_IO
]
if len(bytes_data) > 0 or len(tensor_data) > 0:
file_name = gen_file()
self.write_buckets.append(
(self.path / file_name, file_name, (bytes_data, tensor_data))
)
# Check if there is anything to write on this rank
if len(self.write_buckets) > 0:
assert len(self.write_buckets) <= self.thread_count, (
len(self.write_buckets),
self.thread_count,
)
ctx = mp.get_context('fork')
self.write_results = ctx.Manager().dict()
else:
self.write_results = {}
logger.debug(f"D2H and push, time: {time() - start}")
def get_save_function_and_args(self) -> Tuple[Optional[Callable], Tuple]:
"""
Get function that saves the data to storage along with its arguments.
Allows the external caller to apply the save function synchronously or asynchronously.
Returns: None (if there is nothing to write on this rank) or a tuple of:
- the function that saves the data
- arguments to that function
"""
if not self.write_buckets:
return None, ()
return (self.write_preloaded_data_multiproc, (self.write_buckets, self.write_results))
@staticmethod
def write_preloaded_data_multiproc(
write_buckets: List[WriteBucket], write_results: Dict[int, List[WriteResult]]
) -> None:
"""
Performs saving data to storage with multiple processes.
Args:
write_buckets (List[WriteBucket]): write plan
write_results: (Dict[int, List[WriteResult]]): dict to store the write results to.
Assumes multiprocessing save, so keys are local process indices
Returns: None
"""
w_start = time()
ctx = mp.get_context('fork')
p_list = [
ctx.Process(
target=FileSystemWriterAsync.write_preloaded_data,
args=(i, write_bucket, write_results, True),
)
for i, write_bucket in enumerate(write_buckets)
]
for p in p_list:
p.start()
for p in p_list:
p.join()
w_end = time()
logger.debug(
f"{w_end}, rank: {torch.distributed.get_rank()}, write(sync,parallel): {w_end - w_start}"
)
@staticmethod
def write_preloaded_data(
local_proc_idx: int,
write_bucket: WriteBucket,
write_results: Dict[int, List[WriteResult]],
use_fsync: bool,
) -> None:
"""
Performs actual data saving to storage.
Args:
local_proc_idx (int): index of a local process that performs writing
write_bucket (WriteBucket): data to write to storage
write_results (Dict[int, List[WriteResult]]): dict to store the write results to.
Assumes multiprocessing save, so keys are local process indices
use_fsync (bool): if True, calls os.fsync at the end of saving
Returns: None, the write result are written to the `write_results` dict
"""
mem_before = _process_memory()
local_results = []
file_name, storage_key, (bytes_data, tensor_data) = write_bucket
with open(file_name, "wb") as stream:
for write_item, data in bytes_data:
local_results.append(_write_item(stream, data, write_item, storage_key))
for write_item, tensor in tensor_data:
assert tensor.is_cpu
local_results.append(_write_item(stream, tensor, write_item, storage_key))
if use_fsync:
os.fsync(stream.fileno())
write_results[local_proc_idx] = local_results
mem_after = _process_memory()
logger.debug(
f"{local_proc_idx} consumed: {mem_after - mem_before}, before: {mem_before}, after: {mem_after}"
)
def write_data(self, plan: SavePlan, planner: SavePlanner,) -> Future[List[WriteResult]]:
raise NotImplementedError('write_data not implemented for FileSystemWriterAsync')
def retrieve_write_results(self) -> List[WriteResult]:
"""
Turn self.write_results into a single results lists. Includes error check.
Returns (List[WriteResult]): the list of write results from all local processes performing the save.
"""
assert self.write_results is not None
assert self.write_buckets is not None
if len(self.write_results) != len(self.write_buckets):
raise RuntimeError(
f'Incomplete worker results (expected {len(self.write_buckets)}, got {len(self.write_results)}.'
f' This probably indicates a worker failure.'
)
return list(chain.from_iterable(self.write_results.values()))
def _split_by_size_and_type(bins: int, items: List[WriteItem]) -> List[List[WriteItem]]:
"""
Splits write items according to item size into close to uniform bins.
Same as torch.distributed.checkpoint.filesystem._split_by_size_and_type,
but with a fixed _item_size function.
Args:
bins (int): numbers of bins to split to
items (List[WriteItem]): list of write items
Returns (List[List[WriteItem]]): write items split to bins
"""
if bins == 1:
return [items]
bytes_items = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
tensor_items = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]
buckets: List[List[WriteItem]] = [[] for _ in range(bins)]
bucket_sizes = [0 for _ in range(bins)]
tensor_items.sort(key=_item_size, reverse=True)
# Assign bytes with a simple round-robin
for i, item in enumerate(bytes_items):
buckets[i % bins].append(item)
# Then, assign tensors according to their sizes
for item in tensor_items:
# TODO replace with headq
idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0]
buckets[idx].append(item)
bucket_sizes[idx] += _item_size(item)
return buckets
def _item_size(item: WriteItem) -> int:
"""
Calculates size (in bytes) of a single write item.
Same as torch.distributed.checkpoint.filesystem._item_size,
but fixes computing chunk size (with item.tensor_data.chunk.sizes)
Args:
item (WriteItem): write item to compute the size of
Returns (int): size of an item in bytes
"""
size = 1
assert item.tensor_data is not None
# can't use math.prod as PT needs to support older python
for s in item.tensor_data.chunk.sizes:
size *= s
dtype = item.tensor_data.properties.dtype
return size * torch._utils._element_size(dtype)
def _process_memory() -> int:
"""
Get memory used by current process.
Returns (int): memory used by current process
"""
process = psutil.Process(os.getpid())
mem_info = process.memory_info()
return mem_info.rss
import logging
from collections import defaultdict
from functools import reduce
from itertools import zip_longest
from pathlib import Path
from time import time
from typing import Dict, List, NamedTuple, Optional, Set, Tuple, TypeVar, cast
import numpy as np
import torch
import torch.distributed as dist
from megatron.core.dist_checkpointing import ShardedTensor
from megatron.core.dist_checkpointing.core import CheckpointingException
from megatron.core.dist_checkpointing.dict_utils import (
dict_list_map_inplace,
extract_matching_values,
merge,
nested_values,
)
from megatron.core.dist_checkpointing.mapping import ShardedStateDict, StateDict, is_main_replica
from megatron.core.dist_checkpointing.serialization import validate_sharding_integrity
from megatron.core.dist_checkpointing.strategies.base import (
AsyncSaveShardedStrategy,
LoadShardedStrategy,
SaveShardedStrategy,
)
logger = logging.getLogger(__name__)
# _ShardId uniquely identifies a ShardedTensor. This is a subset of ShardedTensor
# attributes: key (str), global_offset (tuple) and flattened_range (optional tuple)
_ShardId = Tuple[str, tuple, Optional[tuple]]
class SaveLoadDistribution(NamedTuple):
""" Represents a save or load distribution of ShardedTensors.
Given distribution is valid only for a specific parallelization group,
which is implicit here (not referenced by this class).
Args:
main_rank_for_shard (Dict[_ShardId, int]): specifies which rank should hold
the main replica for a given shard
shards_in_this_group (Set[_ShardId]): which shards have a main replica
in this parallelization group
shard_to_metadata (Dict[_ShardId, ShardedTensor]): maps ShardedTensor
identifier to the original ShardedTensor
"""
main_rank_for_shard: Dict[_ShardId, int]
shards_in_this_group: Set[_ShardId]
shard_to_metadata: Dict[_ShardId, ShardedTensor]
class FullyParallelSaveStrategyWrapper(AsyncSaveShardedStrategy):
""" Wraps arbitrary strategy and distributes the save during `save`.
The save distribution happens without any *data* communication.
Only the *metadata* is exchanged and based on data replication on different
ranks, we try to distribute the save as uniformly as possible.
This wrapper assumes, that setting `replica_id` to 0 will make the
underlying strategy do the saving on current rank. All the other `replica_id`s
are set to 1.
Currently, the save distribution is realized with a greedy algorithm
described in `distribute_shards_to_ranks`.
Args:
strategy (SaveShardedStrategy): base strategy to wrap
parallelization_group (ProcessGroup, optional): process group to use for save
distribution. Note that this doesn't have to match exactly the
data distribution, but should cover the replication pattern
to maximize performance. Defaults to the whole world.
do_cache_distribution (bool, optional): whether to cache the save distribution
from previous calls. Should be set to True only if the state dict
structure between the calls is always the same. Defaults to True.
"""
def __init__(
self,
strategy: SaveShardedStrategy,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
do_cache_distribution: bool = False,
):
super().__init__(strategy.backend, strategy.version)
self.base_strategy = strategy
self.parallelization_group = parallelization_group
self.do_cache_distribution = do_cache_distribution
self.cached_distribution: Optional[SaveLoadDistribution] = None
def async_save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
if not isinstance(self.base_strategy, AsyncSaveShardedStrategy):
raise CheckpointingException(
f'Cannot apply async_save to non-async base strategy {self.base_strategy}'
)
self.apply_saving_parallelization(sharded_state_dict)
return self.base_strategy.async_save(sharded_state_dict, checkpoint_dir)
def save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
self.apply_saving_parallelization(sharded_state_dict)
return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
def apply_saving_parallelization(self, sharded_state_dict: ShardedStateDict) -> None:
""" Distributes the save across ranks by exchanging metadata.
Exchanges metadata from the state dict and computes the uniform
(as close as possible) distribution of saves among the ranks.
If `self.do_cache_distribution` is True, caches the distribution between
the calls and subsequent distributions happen without any inter-rank
communication.
Args:
sharded_state_dict (ShardedStateDict): state dict to distribute the saving
Returns: None
"""
if self.do_cache_distribution and self.cached_distribution is not None:
logger.debug(f'Apply *cached* save parallelization')
precomputed_distribution = self.cached_distribution
else:
logger.debug(f'Apply save parallelization')
precomputed_distribution = determine_main_replica_uniform_distribution(
sharded_state_dict, self.parallelization_group
)
distribute_main_replicas_with_precomputed_distribution(
sharded_state_dict, self.parallelization_group, precomputed_distribution
)
if self.cached_distribution is None:
# First time applying the parallelization
validate_sharding_integrity(nested_values(sharded_state_dict))
if self.do_cache_distribution:
self.cached_distribution = precomputed_distribution
@property
def can_handle_sharded_objects(self):
return self.base_strategy.can_handle_sharded_objects
class FullyParallelLoadStrategyWrapper(LoadShardedStrategy):
""" Wraps arbitrary load strategy and distributes the load during `load`.
See `load` method docs for details.
Args:
strategy (LoadShardedStrategy): base strategy to wrap
parallelization_group (ProcessGroup, optional): process group to use for load
distribution. Note that this doesn't have to match exactly the
data distribution, but should cover the replication pattern
to maximize performance. Defaults to the whole world.
In most cases, it's recommended to set it to the DP group.
do_cache_distribution (bool, optional): whether to cache the load distribution
from previous calls. Should be set to True only if the state dict
structure between the calls is always the same. Defaults to False,
since the loading in general happens only once during training.
Note that the load distribution *cannot* be reused as a save distribution,
because save/load is not fully symmetrical.
exchange_algo (str): algorithm to use for exchanging the data.
Options:
- broadcast - each rank broadcasts individual tensors to others
- gather_object (default) - ranks all_gather_object the whole loaded state dicts
- gather_rounds (default) - ranks all gather individual tensors in rounds
See method docs for more details.
"""
def __init__(
self,
strategy: LoadShardedStrategy,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
do_cache_distribution: bool = False,
exchange_algo: str = 'gather_rounds',
):
super().__init__()
self.base_strategy = strategy
self.parallelization_group = parallelization_group
self.do_cache_distribution = do_cache_distribution
self.exchange_algo = exchange_algo
self.cached_distribution: Optional[SaveLoadDistribution] = None
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path) -> StateDict:
""" Distributes the load and calls underlying strategy only for parts of the state dict.
Steps:
1. Load metadata is exchanged between the ranks in the parallelization group.
2. Each rank deterministically plans the load for the whole workload
so that the loads are as uniform as possible.
3. Each ranks loads its planned shard of the checkpoint.
4. All ranks exchange the loaded shards.
Internode communication is involved in steps (1) (with metadata)
and (4) (with actual data). Storage interaction is involved in step (3).
Currently, the load distribution (step 2) is realized with a greedy algorithm
described in `distribute_shards_to_ranks` (same as for saving distribution).
Currently, the shards are all gathered between all ranks in the parallelization
group. This might not be optimal (some ranks do not need all tensors),
but it's a reasonable approximation for an optimal exchange in most scenarios.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to load
checkpoint_dir (Path): checkpoint directory to load from
Returns:
StateDict: loaded state dict. The state dict should be equivalent to
a state dict that would be loaded with the underlying strategy
without this wrapper.
"""
if torch.distributed.get_world_size(self.parallelization_group) <= 1:
return self.base_strategy.load(sharded_state_dict, checkpoint_dir)
# Step 1 and 2: exchange load metadata and distribute the load
start = time()
precomputed_distribution = self.apply_loading_parallelization(sharded_state_dict)
assert (
precomputed_distribution is not None
), 'Expecting non-trivial distribution for non-trivial parallelization group'
end = time()
logger.debug(f'self.apply_loading_parallelization took {end - start}s')
start = end
# Step 3: load part of the checkpoint.
# Load only sharded objects first. ShardedTensors will be loaded separately
# so that we can keep track of sharded tensors loaded by this rank
(
sharded_tensors,
sharded_state_dict,
to_load_shards,
unloaded_shards,
) = self._defer_loading_sharded_tensors(sharded_state_dict)
loaded_state_dict = self.base_strategy.load(sharded_state_dict, checkpoint_dir)
end = time()
logger.debug(f'Base load of ShardedObjects took {end - start}s')
start = end
# Load sharded tensors separately
loaded_tensors = self.base_strategy.load(to_load_shards, checkpoint_dir)
end = time()
logger.debug(f'Base load of ShardedTensors took {end - start}s')
start = end
# Step 4: exchange data between ranks
logger.debug(f'Applying parallel load with algo {self.exchange_algo}')
if self.exchange_algo == 'gather_object':
exchange_fn = self.exchange_loaded_tensors_gather_object
elif self.exchange_algo == 'gather_rounds':
exchange_fn = self.exchange_loaded_tensors_gather_rounds
elif self.exchange_algo == 'broadcast':
exchange_fn = self.exchange_loaded_tensors_broadcast
else:
raise NotImplementedError(f'Unrecognized gather algorithm: {self.exchange_algo}')
all_loaded_tensors = exchange_fn(
loaded_tensors, unloaded_shards, precomputed_distribution, self.parallelization_group,
)
if not set(unloaded_shards.keys()).issubset(all_loaded_tensors.keys()):
missing_shards = set(unloaded_shards.keys()) - all_loaded_tensors.keys()
raise CheckpointingException(
f'Missing shards after fully parallel loading: {missing_shards}'
)
sync_start = time()
torch.cuda.synchronize()
end = time()
logger.debug(f'torch.cuda.synchronize took {end - sync_start}s')
logger.debug(f'self.exchange_loaded_tensors took {end - start}s')
self.fill_in_deferred_sharded_tensors(sharded_tensors, all_loaded_tensors)
merge(loaded_state_dict, sharded_tensors)
return loaded_state_dict
def _defer_loading_sharded_tensors(
self, sharded_state_dict: ShardedStateDict
) -> Tuple[
ShardedStateDict,
ShardedStateDict,
Dict[_ShardId, ShardedTensor],
Dict[_ShardId, ShardedTensor],
]:
""" Divides state dict into parts loaded by this vs other ranks.
ShardedTensors with main replica_id will be loaded by this rank,
others will be received by other ranks (after loading from storage).
Args:
sharded_state_dict (ShardedStateDict): state dict with ShardedTensor
that will be divided.
Returns: a tuple of:
- ShardedStateDict: sub-state dict only with ShardedTensors
- ShardedStateDict: sub-state dict with non-ShardedTensors
- Dict[_ShardId, ShardedTensor]: ShardedTensor are uniquely identified
by shard ids. This is a mapping from shard id to a corresponding
ShardedTensor for tensors loaded by *this* rank
- Dict[_ShardId, ShardedTensor]: mapping from shard id to a corresponding
ShardedTensor for tensors loaded by *other* ranks
"""
to_load_shards = {}
unloaded_shards = {}
sharded_tensors, sharded_state_dict = extract_matching_values(
sharded_state_dict, lambda v: isinstance(v, ShardedTensor)
)
def wrap_non_main_replicas(x):
if isinstance(x, ShardedTensor):
# Assign shard to be loaded or not
if is_main_replica(x.replica_id):
to_load_shards[_sharded_tensor_shard_id(x)] = x
else:
unloaded_shards[_sharded_tensor_shard_id(x)] = x
return x
dict_list_map_inplace(wrap_non_main_replicas, sharded_tensors)
return sharded_tensors, sharded_state_dict, to_load_shards, unloaded_shards
def apply_loading_parallelization(
self, sharded_state_dict: ShardedStateDict
) -> Optional[SaveLoadDistribution]:
""" Distributes the load across ranks by exchanging metadata.
Exchanges metadata from the state dict and computes the uniform
(as close as possible) distribution of loads among the ranks.
Marks ShardedTensors to be loaded by the current rank with replica_id 0
(and others with non 0 values).
If `self.do_cache_distribution` is True, caches the distribution between
the calls and subsequent distributions happen without any inter-rank
communication.
Args:
sharded_state_dict (ShardedStateDict): state dict to distribute the loading
Returns:
SaveLoadDistribution (optional): the computed loading distribution
"""
if self.do_cache_distribution and self.cached_distribution is not None:
logger.debug(f'Apply *cached* load parallelization')
precomputed_distribution = self.cached_distribution
else:
logger.debug(f'Apply load parallelization')
precomputed_distribution = determine_main_replica_uniform_distribution(
sharded_state_dict, self.parallelization_group, True
)
distribute_main_replicas_with_precomputed_distribution(
sharded_state_dict, self.parallelization_group, precomputed_distribution
)
if self.do_cache_distribution:
self.cached_distribution = precomputed_distribution
return precomputed_distribution
def exchange_loaded_tensors_gather_object(
self,
loaded_tensors: Dict[_ShardId, torch.Tensor],
unloaded_shards: Dict[_ShardId, ShardedTensor],
precomputed_distribution: SaveLoadDistribution,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
) -> Dict[_ShardId, torch.Tensor]:
""" Exchange the tensors loaded by different ranks with a simple all_gather_object call.
This version can be used for debugging purposes do to its simplistic
implementation. Shouldn't be used if performance is important.
Args:
loaded_tensors (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to tensors already loaded by this rank.
unloaded_shards (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to ShardedTensors that aren't loaded yet.
precomputed_distribution (SaveLoadDistribution): uniform load distribution
parallelization_group (ProcessGroup, optional): process group used for load
distribution. Tensors will be exchanged within this group
Returns:
Dict[_ShardId, torch.Tensor]: dictionary mapping shard ids to tensors
needed by this rank to load a given state dict. Includes
previously loaded tensors (from `loaded_tensors` input)
"""
all_loaded_tensors_list = [None] * torch.distributed.get_world_size(
group=parallelization_group
)
torch.distributed.all_gather_object(
all_loaded_tensors_list, loaded_tensors, group=parallelization_group
)
all_loaded_tensors_list = cast(List[Dict[_ShardId, torch.Tensor]], all_loaded_tensors_list)
all_loaded_tensors = reduce(lambda x, y: {**x, **y}, all_loaded_tensors_list)
# Error checks
if len(all_loaded_tensors) != sum(map(len, all_loaded_tensors_list)):
err_msg = 'Duplicate shard ids loaded by different ranks'
if torch.distributed.get_rank() == 0:
logger.error(
f'{err_msg}. Shards ids by rank: {[lt.keys() for lt in all_loaded_tensors_list]}'
)
raise CheckpointingException(err_msg)
return all_loaded_tensors
@torch.no_grad()
def exchange_loaded_tensors_gather_rounds(
self,
loaded_tensors: Dict[_ShardId, torch.Tensor],
unloaded_shards: Dict[_ShardId, ShardedTensor],
precomputed_distribution: SaveLoadDistribution = None,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
) -> Dict[_ShardId, torch.Tensor]:
""" Exchange the tensors loaded by different ranks with several all_gather calls.
Groups tensors by dtype, divide tensors that will be exchanged into rounds
and execute all_gather for tensors from each round.
Note: the loading is distributed across ranks based on total loaded size
in bytes, so there is no guarantee that number of rounds needed for each
rank will be similar, which might result in a lot of almost empty
all_gathers. The solution would be to group all tensors into a one
bytes tensor and do a single all_gather (with similarly sized messages).
Args:
loaded_tensors (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to tensors already loaded by this rank.
unloaded_shards (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to ShardedTensors that aren't loaded yet.
precomputed_distribution (SaveLoadDistribution): uniform load distribution
parallelization_group (ProcessGroup, optional): process group used for load
distribution. Tensors will be exchanged within this group
Returns:
Dict[_ShardId, torch.Tensor]: dictionary mapping shard ids to tensors
needed by this rank to load a given state dict. Includes
previously loaded tensors (from `loaded_tensors` input)
"""
shard_to_saving_rank, _, shard_to_metadata = precomputed_distribution
local_rank = torch.distributed.get_rank(group=self.parallelization_group)
all_loaded_tensors = dict(loaded_tensors)
# Group by dtype so that we all_gather tensors of the same dtype
for dtype in sorted(
set(map(lambda sh_ten: sh_ten.dtype, shard_to_metadata.values())), key=str
):
start = time()
# shards_by_rank maps rank to tensors loaded by this rank
shards_by_rank: List[List[torch.Tensor]] = [
[] for _ in range(torch.distributed.get_world_size(group=parallelization_group))
]
for shard_id, rank in shard_to_saving_rank.items():
if shard_to_metadata[shard_id].dtype == dtype:
shards_by_rank[rank].append(shard_id)
# Transpose `shards_by_rank` to form exchange rounds
shards_by_round = zip_longest(*shards_by_rank, fillvalue=None)
for round_idx, round_shard_ids in enumerate(shards_by_round):
round_tensors = []
for rank, shard_id in enumerate(round_shard_ids):
if shard_id is None:
# if no more useful data, the given rank will exchange empty tensor
local_ten = torch.empty(0, dtype=dtype, device='cuda')
else:
assert isinstance(shard_id, tuple), type(shard_id)
if rank == local_rank:
assert shard_id in all_loaded_tensors, (
shard_id,
all_loaded_tensors.keys(),
)
all_loaded_tensors[shard_id] = all_loaded_tensors[shard_id].cuda()
local_ten = all_loaded_tensors[shard_id]
else:
local_ten = self._get_empty_tensor_for_exchange(
shard_id, shard_to_metadata, unloaded_shards, all_loaded_tensors
)
round_tensors.append(local_ten)
torch.distributed.all_gather(
list(round_tensors),
round_tensors[local_rank],
group=self.parallelization_group,
async_op=True,
)
del round_tensors # remove tensor references
end = time()
if torch.distributed.get_rank() == 0:
logger.debug(f'{dtype} exchange rounds all_gather schedule took {end - start}s')
return all_loaded_tensors
@torch.no_grad()
def exchange_loaded_tensors_broadcast(
self,
loaded_tensors: Dict[_ShardId, torch.Tensor],
unloaded_shards: Dict[_ShardId, ShardedTensor],
precomputed_distribution: SaveLoadDistribution = None,
parallelization_group: Optional[torch.distributed.ProcessGroup] = None,
) -> Dict[_ShardId, torch.Tensor]:
""" Exchange the tensors loaded by different ranks by a series of broadcasts.
For each rank for each loaded tensor do a broadcast to the whole group.
A reasonable tradeoff in terms of performance and simplicity.
Args:
loaded_tensors (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to tensors already loaded by this rank.
unloaded_shards (Dict[_ShardId, torch.Tensor]): mapping from ShardedTensor
shard ids to ShardedTensors that aren't loaded yet.
precomputed_distribution (SaveLoadDistribution): uniform load distribution
parallelization_group (ProcessGroup, optional): process group used for load
distribution. Tensors will be exchanged within this group
Returns:
Dict[_ShardId, torch.Tensor]: dictionary mapping shard ids to tensors
needed by this rank to load a given state dict. Includes
previously loaded tensors (from `loaded_tensors` input)
"""
shard_to_saving_rank, _, shard_to_metadata = precomputed_distribution
local_rank = torch.distributed.get_rank(group=self.parallelization_group)
all_loaded_tensors = dict(loaded_tensors)
start = time()
for shard_id, rank in shard_to_saving_rank.items():
if rank == local_rank:
assert shard_id in all_loaded_tensors, (shard_id, all_loaded_tensors.keys())
all_loaded_tensors[shard_id] = all_loaded_tensors[shard_id].cuda()
local_ten = all_loaded_tensors[shard_id]
else:
local_ten = self._get_empty_tensor_for_exchange(
shard_id, shard_to_metadata, unloaded_shards, all_loaded_tensors
)
global_src_rank = torch.distributed.get_global_rank(parallelization_group, rank)
torch.distributed.broadcast(
local_ten, src=global_src_rank, group=parallelization_group, async_op=True
)
end = time()
if torch.distributed.get_rank() == 0:
logger.debug(f'exchange broadcast schedule took {end - start}s')
return all_loaded_tensors
def _get_empty_tensor_for_exchange(
self,
shard_id: _ShardId,
needed_shards: Dict[_ShardId, ShardedTensor],
unneeded_shards: Dict[_ShardId, ShardedTensor],
loaded_tensors: Dict[_ShardId, torch.Tensor],
) -> torch.Tensor:
""" Determines the empty tensor to use for exchange.
If shard_id is needed by this rank, it will be in the `unloaded_shards`.
Otherwise, the metadata for this tensor can be found in `shard_to_metadata`
Args:
shard_id (_ShardId): shard_id that will be exchanged
needed_shards (Dict[_ShardId, ShardedTensor]): mapping from shard ids
to metadata for shards needed by this rank
unneeded_shards (Dict[_ShardId, ShardedTensor]): mapping from shard ids
to metadata for shards that can be discarded after exchange
loaded_tensors (Dict[_ShardId, torch.Tensor]): mapping where useful tensors
are placed in
Returns:
torch.Tensor: empty tensor to be exchanged
"""
local_unloaded_sh_ten = needed_shards.get(shard_id)
if local_unloaded_sh_ten is None:
sh_ten = unneeded_shards[shard_id]
sh_ten.init_data('cuda')
tensor = sh_ten.data
sh_ten.data = None # won't be used. free memory
else:
local_unloaded_sh_ten.init_data('cuda')
tensor = local_unloaded_sh_ten.data
loaded_tensors[shard_id] = tensor
return tensor
def fill_in_deferred_sharded_tensors(
self, sharded_state_dict: ShardedStateDict, loaded_tensors: Dict[_ShardId, torch.Tensor]
) -> None:
""" Fill in tensors not loaded by current rank with tensors from `loaded_tensors` map.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to fill in.
ShardedTensors are completely replaced with corresponding torch.Tensors.
loaded_tensors (Dict[_ShardId, torch.Tensor]): dict allowing to map
ShardedTensor from the sharded_state_dict to loaded tensors.
Returns:
"""
def fill_in_sharded_tensor(x):
if isinstance(x, ShardedTensor):
try:
x = loaded_tensors[_sharded_tensor_shard_id(x)]
except KeyError as e:
raise CheckpointingException(
f'Missing loaded tensor shard: {_sharded_tensor_shard_id(x)}'
) from e
return x
dict_list_map_inplace(fill_in_sharded_tensor, sharded_state_dict)
@property
def can_handle_sharded_objects(self):
return self.base_strategy.can_handle_sharded_objects
def load_tensors_metadata(self, checkpoint_dir: Path):
self.base_strategy.load_tensors_metadata(checkpoint_dir)
def check_backend_compatibility(self, loaded_version):
self.base_strategy.check_backend_compatibility(loaded_version)
def check_version_compatibility(self, loaded_version):
self.base_strategy.check_version_compatibility(loaded_version)
def _sharded_tensor_shard_id(sharded_tensor: ShardedTensor) -> _ShardId:
""" Unique id of the sharded tensor data.
Should yield the same value for same data replicated on different ranks.
Args:
sharded_tensor (ShardedTensor): sharded tensor representing the data shard
Returns (tuple): unique id of a data shard
"""
f_range = sharded_tensor.flattened_range
return (
sharded_tensor.key,
sharded_tensor.global_offset,
None if f_range is None else (f_range.start, f_range.stop),
)
def _shard_size(sh_ten: ShardedTensor):
""" Returns size in bytes of a given sharded tensor. """
if sh_ten.flattened_range is None:
numel = np.product(sh_ten.local_shape)
else:
numel = sh_ten.flattened_range.stop - sh_ten.flattened_range.start
return numel * torch._utils._element_size(sh_ten.dtype)
def determine_main_replica_uniform_distribution(
sharded_state_dict: ShardedStateDict,
parallelization_group: torch.distributed.ProcessGroup,
is_loading: bool = False,
) -> Optional[SaveLoadDistribution]:
""" Computes the save distribution.
Should be used in conjunction with `distribute_main_replicas_with_precomputed_distribution`
which applies the computed save distribution.
We rely on the fact that the assignment algorithm is deterministic on all ranks,
so there is no extra communication needed after metadata exchange.
Args:
sharded_state_dict (ShardedStateDict): state dict to compute the distribution of
parallelization_group (ProcessGroup): distribution will be computed
within this process group
is_loading (bool, optional): whether the distribution is for loading or saving.
For loading, even non-main replicas must be loaded by this parallelization
group. Defaults to False.
Returns (SaveLoadDistribution, optional): distribution that can be used to apply the
parallelization. Returns None if the process_group is trivial (1 rank)
"""
group_size = torch.distributed.get_world_size(group=parallelization_group)
if group_size <= 1:
return
local_shards = list(
sh_base
for sh_base in nested_values(sharded_state_dict)
if isinstance(sh_base, ShardedTensor)
)
local_shards_no_data = [ten.without_data() for ten in local_shards]
all_shards = [None] * torch.distributed.get_world_size(group=parallelization_group)
torch.distributed.all_gather_object(
all_shards, local_shards_no_data, group=parallelization_group
)
shard_to_ranks = defaultdict(list)
shard_to_size = {}
shard_to_metadata = {}
shards_saved_by_this_parallelization_group: Set[_ShardId] = set()
for rank, rank_shards in enumerate(all_shards):
for sh_ten in rank_shards:
shard_id = _sharded_tensor_shard_id(sh_ten)
shard_to_ranks[shard_id].append(rank)
if shard_id not in shard_to_size:
shard_to_size[shard_id] = _shard_size(sh_ten)
shard_to_metadata[shard_id] = sh_ten
if is_main_replica(sh_ten.replica_id) or is_loading:
shards_saved_by_this_parallelization_group.add(shard_id)
shard_to_ranks = {
k: v for k, v in shard_to_ranks.items() if k in shards_saved_by_this_parallelization_group
}
shard_to_saving_rank = distribute_shards_to_ranks(
shard_to_ranks, shard_to_size, len(all_shards)
)
return SaveLoadDistribution(
shard_to_saving_rank, shards_saved_by_this_parallelization_group, shard_to_metadata
)
def distribute_main_replicas_with_precomputed_distribution(
sharded_state_dict: ShardedStateDict,
parallelization_group: torch.distributed.ProcessGroup,
precomputed_distribution: Optional[SaveLoadDistribution],
):
""" Applies the save distribution computed with `determine_main_replica_uniform_distribution`.
Based on rank assignment, sets replica ids of the shards saved by current rank to 0
and all the other replica ids to 1.
Args:
sharded_state_dict (ShardedStateDict): state dict to apply the save distribution to
parallelization_group (ProcessGroup): distribution will be applied within this
process group. Must match with the process group passed to
`determine_main_replica_uniform_distribution`.
precomputed_distribution (SaveLoadDistribution): distribution computed with
`determine_main_replica_uniform_distribution`
Returns: None
Example replica ids of tensors A, B, C before distribution:
rank0: A: (0, 0, 0), B: (0, 0, 0), C: (0, 0, 0)
rank1: A: (0, 0, 1), B: (0, 0, 1), C: (0, 0, 1)
rank2: A: (0, 0, 2), B: (0, 0, 2), C: (0, 0, 2)
Replicas after distribution for the example above:
rank0: A: 0, B: 1, C: 1
rank1: A: 1, B: 0, C: 1
rank2: A: 1, B: 1, C: 0
"""
if torch.distributed.get_world_size(group=parallelization_group) <= 1:
return
if precomputed_distribution is None:
raise ValueError(
'precomputed_distribution must be not None for non-trivial parallelization group'
)
local_shards = list(
sh_base
for sh_base in nested_values(sharded_state_dict)
if isinstance(sh_base, ShardedTensor)
)
rank_within_dp_group = torch.distributed.get_rank(parallelization_group)
for sh_ten in local_shards:
shard_id = _sharded_tensor_shard_id(sh_ten)
if (
shard_id in precomputed_distribution.shards_in_this_group
and rank_within_dp_group == precomputed_distribution.main_rank_for_shard[shard_id]
):
sh_ten.replica_id = 0
else:
sh_ten.replica_id = 1
T = TypeVar('T')
def distribute_shards_to_ranks(
shard_to_ranks: Dict[T, List[int]], shard_to_size: Dict[T, int], num_ranks: int
) -> Dict[T, int]:
""" Computes uniform distribution of workload across ranks, based on sizes.
Currently, the assignment is greedy, based on:
1. Firstly, the coverage of each shard
(how many ranks the shard is available on; lower coverage is assigned first)
2. Secondly, the size of each shard (larger size is assigned first)
3. Finally, shard id for differentiation.
Third step is added because we rely on the fact that the assignment is deterministic on all ranks.
Args:
shard_to_ranks (Dict[T, List[int]]): mapping which tells which rank have access to which shards
shard_to_size (Dict[T, int]): sizes of each shard
num_ranks (int): number of ranks in the parallelization group
Returns (Dict[T, int]): assignment of shard to rank (which rank should do the work
to achieve maximal uniformity)
"""
shard_to_ranks = {k: tuple(v) for k, v in shard_to_ranks.items()}
shard_to_saving_rank = {}
rank_sizes = [(0, rank) for rank in range(num_ranks)]
# start from tensors with lowest coverage, then go by tensor size from largest (hence minus size)
for shard_id, shard_ranks in sorted(
shard_to_ranks.items(),
key=lambda sh_id_ranks: (
len(sh_id_ranks[1]),
-shard_to_size[sh_id_ranks[0]],
sh_id_ranks[0],
),
):
# assign greedily to the least occupied rank
size, rank = min((size, rank) for size, rank in rank_sizes if rank in shard_ranks)
shard_to_saving_rank[shard_id] = rank
rank_sizes[rank] = (size + shard_to_size[shard_id], rank)
logger.debug(f'distribute_shards_to_ranks distribution: {rank_sizes}')
return shard_to_saving_rank
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
""" State dict saver for PyT Distributed format allowing asynchronous save. """
from logging import getLogger
from time import time
from typing import TYPE_CHECKING, Optional, Tuple, cast
import torch
import torch.distributed as dist
from torch.distributed.checkpoint import CheckpointException
from torch.distributed.checkpoint.default_planner import DefaultSavePlanner
from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE, Metadata
from torch.distributed.checkpoint.planner import SavePlanner
from torch.distributed.checkpoint.utils import _DistWrapper, _get_failure_dict
if TYPE_CHECKING:
from .filesystem_async import FileSystemWriterAsync
logger = getLogger(__name__)
def save_state_dict_async_plan(
state_dict: STATE_DICT_TYPE,
storage_writer: 'FileSystemWriterAsync',
process_group: Optional[dist.ProcessGroup] = None,
coordinator_rank: int = 0,
planner: Optional[SavePlanner] = None,
) -> Tuple['FileSystemWriterAsync', Metadata, _DistWrapper]:
"""
First stage of saving a state dict to storage.
This is an async adjustment of torch.distributed.checkpoint.state_dict_saver.
In order to support async save, saving should be split into three parts:
1. Planning
2. Actual saving
3. Finalization
Out of these, step (2) *must* happen asynchronously.
The first step is realized with this function.
The planning part consists of several steps, described here:
https://pytorch.org/docs/stable/distributed.checkpoint.html#torch.distributed.checkpoint.SavePlanner
Args:
state_dict (STATE_DICT_TYPE): state dict to save
storage_writer (FileSystemWriterAsync): in current version only an instance of
FileSystemWriterAsync
process_group (dist.ProcessGroup, optional): process group used for save planning
coordinator_rank (int, optional): coordinator rank for planning. Defaults to 0.
planner (SavePlanner, optional): save planner for torch.distributed.checkpoint format
Returns: Tuple of:
- storage writer (the one passed as input)
- metadata from planning
- distributed wrapper used for planning
The return value of this function should be passed as an input to
`save_state_dict_async_finalize`.
"""
rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
dist_wrapper = _DistWrapper(process_group, True, coordinator_rank)
if planner is None:
planner = DefaultSavePlanner()
assert planner is not None
global_metadata = None
def local_step():
assert planner is not None
planner.set_up_planner(state_dict, dist_wrapper.is_coordinator)
storage_writer.set_up_storage_writer(dist_wrapper.is_coordinator)
local_plan = planner.create_local_plan()
local_plan = storage_writer.prepare_local_plan(local_plan)
return local_plan
def global_step(all_local_plans):
nonlocal global_metadata
assert planner is not None
all_local_plans, global_metadata = planner.create_global_plan(all_local_plans)
all_local_plans = storage_writer.prepare_global_plan(all_local_plans)
return all_local_plans
# Execute local and global planning
start_plan = time()
central_plan = dist_wrapper.reduce_scatter("plan", local_step, global_step)
logger.debug(f"rank: {rank}, plan time: {time() - start_plan}")
# Prepare async writing of tensors.
# The `storage_writer` will store the information about tensors it needs to save
start = time()
final_local_plan = planner.finish_plan(central_plan)
storage_writer.prepare_write_data(final_local_plan, planner)
end = time()
logger.debug(f"{time()} rank: {rank}, write(async) time: {end - start}")
return storage_writer, cast(Metadata, global_metadata), dist_wrapper
def save_state_dict_async_finalize(
storage_writer: 'FileSystemWriterAsync', global_metadata: Metadata, dist_wrapper: _DistWrapper,
) -> None:
"""
Finalization of save_state_dict_async_plan.
The input arguments are the same as the save_state_dict_async_plan output,
the `write_results` are retrieved from the storage_writer.
Args:
storage_writer (FileSystemWriterAsync): storage writer used for planning
global_metadata (Metadata): metadata created during planning
dist_wrapper (_DistWrapper): distributed wrapper created during planning
Returns: None
"""
write_results = storage_writer.retrieve_write_results()
# Gather the write results that will be saved to the metadata file.
gather_start = time()
all_results = dist_wrapper.gather_object(write_results)
gather_end = time()
logger.debug(f"{gather_end}, {torch.distributed.get_rank()}, gather: {gather_end-gather_start}")
# Store the metadata on coordinator rank
if dist_wrapper.is_coordinator:
node_failures = _get_failure_dict(all_results)
if len(node_failures) == 0:
assert global_metadata is not None
write_start = time()
storage_writer.finish(global_metadata, all_results)
write_end = time()
logger.debug(f"{write_end}, metadata_write: {write_end - write_start}")
else:
raise CheckpointException("write", node_failures)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Strategies using TensorStore to load and save Zarr arrays. """
from functools import partial
from itertools import starmap
from logging import getLogger
from pathlib import Path
import tensorstore as ts
import torch
from ..core import CheckpointingException
from ..dict_utils import dict_list_map_inplace
from ..mapping import ShardedStateDict, ShardedTensor
from .base import LoadShardedStrategy, StrategyAction, default_strategies
from .zarr import (
load_zarr_based_sharded_metadata,
numpy_to_torch_dtype_dict,
postprocess_numpy_array,
)
_import_trigger = None
logger = getLogger(__name__)
class TensorStoreLoadShardedStrategy(LoadShardedStrategy):
def __init__(self, load_directly_on_device: bool = False):
super().__init__()
self.load_directly_on_device = load_directly_on_device
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
if torch.distributed.get_rank() == 0:
print(f'Loading distributed checkpoint with {self.__class__.__name__}')
if self.load_directly_on_device:
print(f'Loading distributed checkpoint directly on the GPU')
load_fn = partial(
_load_from_array,
checkpoint_dir=checkpoint_dir,
load_directly_on_device=self.load_directly_on_device,
)
dict_list_map_inplace(load_fn, sharded_state_dict)
return sharded_state_dict
def load_tensors_metadata(self, checkpoint_dir: Path):
def get_ts_shape_dtype(path):
arr = open_ts_array(path)
return arr.shape, arr.dtype.numpy_dtype
return load_zarr_based_sharded_metadata(checkpoint_dir, get_ts_shape_dtype)
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
def merge_global_slice_with_shape(global_slice, actual_shape, key):
def _merge_slice(dim_slice, dim_size):
if isinstance(dim_slice, slice):
assert (
dim_slice.start < dim_size
), f'Got empty slice for ShardedTensor {key} ({dim_slice}, {dim_size})'
if dim_slice.stop > dim_size:
dim_slice = slice(dim_slice.start, dim_size, dim_slice.step)
return dim_slice
assert len(global_slice) == len(actual_shape), (global_slice, actual_shape, key)
return tuple(starmap(_merge_slice, zip(global_slice, actual_shape)))
def _load_from_array(
sharded_tensor: ShardedTensor,
checkpoint_dir: Path,
load_directly_on_device: bool = False,
apply_flattened_range: bool = True,
):
x = _load_regular_chunk(sharded_tensor, checkpoint_dir)
ten = postprocess_numpy_array(x, sharded_tensor, apply_flattened_range)
if load_directly_on_device:
sharded_tensor.data.data.copy_(ten)
return sharded_tensor.data
else:
return ten
def _load_regular_chunk(sharded_tensor: ShardedTensor, checkpoint_dir: Path):
assert isinstance(sharded_tensor, ShardedTensor), type(sharded_tensor)
arr = open_ts_array(checkpoint_dir / sharded_tensor.key)
if sharded_tensor.global_shape == arr.shape:
x = (
arr[sharded_tensor.global_slice()].read().result()
) # flattened tensors loading is delayed
elif sharded_tensor.allow_shape_mismatch:
global_slice = merge_global_slice_with_shape(
sharded_tensor.global_slice(), arr.shape, sharded_tensor.key
)
x = arr[global_slice].read().result() # flattened tensors loading is delayed
else:
_msg = (
f'Global shape mismatch for loaded ({arr.shape})'
f' and expected ({sharded_tensor.global_shape}) tensor'
f' for key {sharded_tensor.key}'
)
raise CheckpointingException(_msg)
return x
def open_ts_array(arr_path: Path):
"""Opens a Zarr file array with Tensorstore with basic setting.
Args:
arr_path (Path): path to a Zarr (Tensorstore) array
"""
spec = {'driver': 'zarr', 'metadata_key': '.zarray', 'kvstore': {}}
spec['kvstore'] = {
'driver': 'file',
'path': str(arr_path),
}
try:
arr = ts.open(ts.Spec(spec), open=True).result()
except Exception as e:
raise CheckpointingException(f'Array {arr_path} could not be loaded. Error: {e}') from e
return arr
default_strategies[StrategyAction.LOAD_SHARDED.value][
('zarr', 1)
] = TensorStoreLoadShardedStrategy()
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Strategies using PyTorch distributed.checkpoint as an underlying format. """
import dataclasses
import io
import itertools
import math
from collections import ChainMap, defaultdict
from dataclasses import dataclass
from itertools import product
from logging import getLogger
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union, cast
import numpy as np
import torch
from torch.distributed import checkpoint
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import Shard, ShardedTensorMetadata, TensorProperties
from torch.distributed._sharded_tensor import ShardedTensor as TorchShardedTensor
from torch.distributed.checkpoint import (
DefaultLoadPlanner,
DefaultSavePlanner,
FileSystemReader,
LoadPlan,
Metadata,
SavePlan,
TensorStorageMetadata,
WriteItem,
)
from torch.distributed.checkpoint._nested_dict import FLATTEN_MAPPING, unflatten_state_dict
from torch.distributed.checkpoint._traverse import OBJ_PATH, traverse_state_dict
from torch.distributed.checkpoint.default_planner import create_default_local_save_plan
from torch.distributed.checkpoint.planner_helpers import _create_write_items
from ..core import CheckpointingException
from ..dict_utils import nested_values
from ..mapping import (
ShardedBase,
ShardedObject,
ShardedStateDict,
ShardedTensor,
StateDict,
is_main_replica,
)
from .async_utils import AsyncRequest
from .base import (
AsyncSaveShardedStrategy,
LoadShardedStrategy,
SaveShardedStrategy,
StrategyAction,
default_strategies,
)
from .filesystem_async import FileSystemWriterAsync
from .state_dict_saver import save_state_dict_async_finalize, save_state_dict_async_plan
_import_trigger = None
logger = getLogger(__name__)
def flatten_state_dict(
state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, Dict[str, OBJ_PATH]]:
""" Flattens state dict into a single level dict.
It's a copy of torch.distributed.checkpoint._nested_dict.flatten_state_dict
which also accepts ShardedBase tensors as terminal objects
Args:
state_dict (ShardedStateDict): state dict to be flattened
Returns (tuple): flattened state dict and a mapping allowing to recreate the original one
"""
flattened = {}
mappings = {}
def flat_copy(path: OBJ_PATH, value: Any) -> None:
new_fqn = ".".join(map(str, path))
if new_fqn in flattened:
raise ValueError(f"duplicated flatten key {new_fqn}")
flattened[new_fqn] = value
mappings[new_fqn] = path
traverse_state_dict(state_dict, flat_copy, lambda x: isinstance(x, (torch.Tensor, ShardedBase)))
return flattened, mappings
def sharded_tensor_to_torch_sharded_tensor(
sh_tens: List[ShardedTensor], rank: Optional[int] = None
) -> TorchShardedTensor:
"""Convert MCore ShardedTensor to PyT ShardedTensor. PyT requires information about all chunks.
On high-level, this function follows the logic of torch.distributed.fsdp._shard_utils._create_chunk_sharded_tensor.
Additionally, it saves `prepend_axis_num` and `has_flattened_range` (specific to MCore) as attributes
for further restoration in `_unwrap_pyt_sharded_tensor`.
NOTE: this function assumes regular (grid) sharding of the MCore ShardedTensor.
The only local irregularities could be introduced with a `flattened_range` attribute.
This function handles 3 different type of ShardedTensors:
1. Non-flat regular ShardedTensors (`not has_flattened_range`)
2. 1D flattened ShardedTensors (`is_flattened_range_1d`)
3. N-D flattened ShardedTensors (`has_flattened_range`)
(1) and (2) type are saved according to their original shape.
Type (3) however requires global shape adjustment for efficiency:
we treat [X, Y, Z] global shape tensor with local shape [x, y, z]
as a [X // x, Y // y, Z // z, x * y * z] tensor with last axis
partitioned according to `flattened_range` slices.
This will need special handling while resharding.
Args:
sh_tens (List[ShardedTensor]): list of sharded tensors to convert
rank (int, optional): current process rank passed to PyT ShardedTensor.
If None, assumes rank in the default pg.
Returns (TorchShardedTensor): PyT ShardedTensor containing all passed shards.
"""
if rank is None:
rank = torch.distributed.get_rank()
some_sh_ten = sh_tens[0]
has_flattened_range = some_sh_ten.flattened_range is not None
is_flattened_range_1d = has_flattened_range and len(some_sh_ten.global_shape) == 1
for sh_ten in sh_tens:
assert (sh_ten.flattened_range is not None) == has_flattened_range, sh_tens
if not sh_ten.data.is_contiguous():
sh_ten.data = sh_ten.data.contiguous()
local_global_offsets = {}
prepend_axis_num = sh_tens[0].prepend_axis_num
# Determine local shards according to tensor type (see docs)
if is_flattened_range_1d:
# Type (2) case: 1D flattened ShardedTensors
for sh_ten in sh_tens:
assert len(sh_ten.global_offset) == 1, sh_ten
assert sh_ten.prepend_axis_num == 0, sh_ten
local_global_offsets.setdefault(sh_ten.global_offset, []).append(sh_ten)
global_shape = some_sh_ten.global_shape
offsets_shape = (
some_sh_ten.local_shape
) # local shape is not flattened, we need it for chunk offsets
local_shards = [
Shard.from_tensor_and_offsets(
sh_ten.data,
[
sh_ten.global_offset[0] + sh_ten.flattened_range.start
], # additional flattened offset
rank,
)
for sh_ten in sh_tens
]
elif has_flattened_range:
# Type (3) case: N-D flattened ShardedTensors
for sh_ten in sh_tens:
local_global_offsets.setdefault(sh_ten.local_chunk_offset_in_global(), []).append(
sh_ten
)
assert sh_ten.data.ndim == 1, sh_ten
sh_ten.data = sh_ten.data.view((1,) * len(sh_ten.global_shape) + (-1,))
# Global shape reformulation:
global_shape = some_sh_ten.axis_fragmentations + (int(np.prod(some_sh_ten.local_shape)),)
offsets_shape = (1,) * len(
some_sh_ten.global_shape
) # reformulated global shape has shape equal ti number of local chunks
local_shards = [
Shard.from_tensor_and_offsets(
sh_ten.data,
list(
sh_ten.local_chunk_offset_in_global() + (sh_ten.flattened_range.start,)
), # additional flattened offset
rank,
)
for sh_ten in sh_tens
]
else:
# Type (1) case: non-flat regular ShardedTensors
for sh_ten in sh_tens:
local_global_offsets.setdefault(sh_ten.global_offset, []).append(sh_ten)
sh_ten.data = sh_ten.data.view(
(1,) * prepend_axis_num + sh_ten.local_shape
) # adjust to prepended_axis_num
global_shape = some_sh_ten.global_shape
offsets_shape = some_sh_ten.data.shape # includes prepended axes
local_shards = [
Shard.from_tensor_and_offsets(
sh_ten.data, list(sh_ten.global_offset), rank # simple case
)
for sh_ten in sh_tens
]
# Create a ShardedTensor without invoking communication. Determine global shards
shard_metadata = []
# NOTE: here we assume a regular grid of shards
for fragment_offsets in itertools.product(*map(range, some_sh_ten.axis_fragmentations)):
offset = tuple(map(lambda x: x[0] * x[1], zip(fragment_offsets, offsets_shape)))
if offset in local_global_offsets:
# local shard
placement = f"rank:{rank}/cuda"
for sh_ten in local_global_offsets[offset]:
if is_flattened_range_1d:
offset = (sh_ten.global_offset[0] + sh_ten.flattened_range.start,)
size = sh_ten.data.shape
elif has_flattened_range:
assert offset == sh_ten.local_chunk_offset_in_global()
# This is not an actual offset, but an offset of the whole shard
# This is needed for a PyT Dist internal integrity check
offset = sh_ten.local_chunk_offset_in_global() + (0,)
size = (1,) * len(offsets_shape) + global_shape[-1:]
else:
size = sh_ten.data.shape
shard_metadata.append(ShardMetadata(offset, size, placement))
else:
# for shards from other ranks we provide simplistic data - this information will be discarded
# during TorchShardedTensor._init_from_local_shards_and_global_metadata call
if has_flattened_range and not is_flattened_range_1d:
offset = offset + (0,)
size = (1,) * len(offsets_shape) + global_shape[-1:]
else:
size = offsets_shape
shard_metadata.append(ShardMetadata(offset, size, "cuda"))
tensor = some_sh_ten.data
sharded_tensor_metadata = ShardedTensorMetadata(
shards_metadata=shard_metadata,
size=torch.Size(global_shape),
tensor_properties=TensorProperties(
dtype=tensor.dtype,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
memory_format=torch.contiguous_format,
pin_memory=tensor.is_pinned(),
),
)
pyt_sh_ten = TorchShardedTensor._init_from_local_shards_and_global_metadata(
local_shards, sharded_tensor_metadata=sharded_tensor_metadata, process_group=None
)
# Store MCore related data as PyTShardedTensor attribute. This won't be stored in the checkpoint, only for runtime purposes
pyt_sh_ten.mcore_sh_ten = sh_ten.without_data()
pyt_sh_ten.mcore_metadata = {}
if has_flattened_range and not is_flattened_range_1d:
pyt_sh_ten.mcore_metadata['nd_reformulated_orig_global_shape'] = sh_ten.global_shape
return pyt_sh_ten
def mcore_to_pyt_state_dict(
state_dict: Dict[str, List[ShardedBase]],
is_loading: bool = False,
init_device: torch.device = torch.device("cpu"),
) -> Dict[str, Union[TorchShardedTensor, io.BytesIO]]:
"""Turn state dict with ShardedTensors and ShardedObjects to state dict compatible with PyT Dist format.
Operates in-place and returns the original state dict.
Args:
state_dict (Dict[str, List[ShardedBase]]): flattened state dict, where values
are lists of either ShardedTensor or ShardedObjects.
is_loading (bool, optional): flag indicating if loading or saving. Defaults to False.
init_device (torch.device, optional): device to initialize potentially missing tensors
during loading. Defaults to 'cpu'.
Returns (Dict[str, Union[TorchShardedTensor, io.BytesIO]]): original dictionary with values
converted either into PyT ShardedTensors or io.BytesIO.
"""
rank = torch.distributed.get_rank()
pyt_state_dict = {}
def _mcore_to_torch_sharded_tensor(sh_tens: List[ShardedTensor]) -> TorchShardedTensor:
"""Build a PyT ShardedTensor from given shards.
During loading:
- if data is None, initialize it with an empty tensor (will be used to copy the data into)
- if `allow_shape_mismatch` is True, the data is initialized with zeros
prior to loading (not all parts of the tensor will be read from the checkpoint)
"""
assert all(isinstance(sh_ten, ShardedTensor) for sh_ten in sh_tens), sh_tens
for sh_ten in sh_tens:
if sh_ten.data is None:
if is_loading:
sh_ten.init_data(
init_device,
init_fn=torch.zeros if sh_ten.allow_shape_mismatch else torch.empty,
)
else:
raise CheckpointingException(f'`data` attr is None for {sh_ten}')
else:
sh_ten.data = sh_ten.data.detach()
if sh_ten.allow_shape_mismatch and is_loading:
sh_ten.data.zero_()
torch_sh_ten = sharded_tensor_to_torch_sharded_tensor(sh_tens, rank)
torch_sh_ten.key = sh_tens[0].key
return torch_sh_ten
def _mcore_to_torch_sharded_object(sh_objs: List[ShardedObject]) -> io.BytesIO:
"""Build io.BytesIO from given sharded objects data."""
assert all(isinstance(sh_obj, ShardedObject) for sh_obj in sh_objs), sh_objs
serialized_data = io.BytesIO()
torch.save([sh_obj.data for sh_obj in sh_objs], serialized_data)
return serialized_data
for k, v in state_dict.items():
if isinstance(v[0], ShardedTensor):
v = cast(List[ShardedTensor], v)
pyt_state_dict[k] = _mcore_to_torch_sharded_tensor(v)
else:
v = cast(List[ShardedObject], v)
pyt_state_dict[k] = _mcore_to_torch_sharded_object(v)
return pyt_state_dict
def _unwrap_pyt_sharded_tensor(sh_ten: TorchShardedTensor) -> List[torch.Tensor]:
""" Unwrap tensor from PyT ShardedTensor instance.
If `prepend_axis_num` was non-zero (which is specific to MCore ShardedTensor)
then the tensor has additional singleton dimensions which should be squeezed.
"""
mcore_sh_ten = sh_ten.mcore_sh_ten
ret_tensors = []
for sh in sh_ten.local_shards():
ten = sh.tensor
if mcore_sh_ten.flattened_range is not None:
assert ten.shape[:-1] == (1,) * (len(ten.shape) - 1), ten.shape
ten = ten.view(-1)
else:
for _ in range(mcore_sh_ten.prepend_axis_num):
ten = ten.squeeze(0)
ret_tensors.append(ten)
return ret_tensors
def _replace_state_dict_keys_with_sharded_keys(
sharded_state_dict: ShardedStateDict, keep_only_main_replica: bool = False
) -> Tuple[Dict[str, List[ShardedBase]], FLATTEN_MAPPING, Dict[str, List[str]]]:
"""Group ShardedBase objects by keys and return mappings required for recreating the original dict. """
flat_sd, flat_mapping = flatten_state_dict(sharded_state_dict)
rename_mapping = defaultdict(list)
new_flat_sd = defaultdict(list)
for k, sh_base in flat_sd.items():
assert isinstance(sh_base, ShardedBase), type(sh_base)
key = sh_base.unique_key if isinstance(sh_base, ShardedObject) else sh_base.key
if is_main_replica(sh_base.replica_id) or not keep_only_main_replica:
rename_mapping[key].append(k)
new_flat_sd[key].append(sh_base)
return new_flat_sd, flat_mapping, rename_mapping
def _replace_sharded_keys_with_state_dict_keys(
state_dict: Dict[str, List[Union[torch.Tensor, io.BytesIO]]],
flat_mapping: FLATTEN_MAPPING,
rename_mapping: Dict[str, List[str]],
):
""" Inverse of _replace_state_dict_keys_with_sharded_keys. """
recovered_sd = {}
for k, tensors in state_dict.items():
assert len(tensors) == len(rename_mapping[k])
for ten, recovered_k in zip(tensors, rename_mapping[k]):
recovered_sd[recovered_k] = ten
return unflatten_state_dict(recovered_sd, flat_mapping)
def _restore_dict_types(x: Union[dict, list, Any], keys_template: Union[dict, list, Any]):
""" Recursively update `x` keys, based on `keys_template`. """
if isinstance(keys_template, dict):
assert isinstance(x, dict), type(x)
for k, v in keys_template.items():
if not isinstance(k, str):
assert str(k) in x, (k, x.keys)
x[k] = x.pop(str(k))
_restore_dict_types(x[k], v)
elif isinstance(keys_template, list):
assert isinstance(x, list), type(x)
for x_val, templ_val in zip(x, keys_template):
_restore_dict_types(x_val, templ_val)
@dataclass(frozen=True)
class MCoreSavePlan(SavePlan):
mcore_data: Dict[str, Dict[str, Any]] = None # Mcore related data about each tensor
class MCoreSavePlanner(DefaultSavePlanner):
"""Differs with the default planner by saving BytesIO objects on all ranks.
In the integration of MCore with PyT Distributed format, BytesIO objects
come from ShardedObjects, which should be treated as separate objects on each rank
(not common on all ranks).
Also, the objects are already packed in io.BytesIO, so no need to redo it
in transform_object.
"""
def __init__(
self,
*args,
nd_flattened_global_shapes: Optional[Dict[str, Tuple[int, ...]]] = None,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.nd_flattened_global_shapes = nd_flattened_global_shapes or {}
def create_local_plan(self) -> SavePlan:
plan = create_default_local_save_plan(self.state_dict, self.is_coordinator)
self._add_non_coordinator_iobytes_request(plan)
if self.flatten_state_dict:
plan = dataclasses.replace(plan, planner_data=self.mappings)
plan = MCoreSavePlan(
items=plan.items,
storage_data=plan.storage_data,
planner_data=plan.planner_data,
mcore_data={
k: sh_ten.mcore_metadata
for k, sh_ten in self.state_dict.items()
if isinstance(sh_ten, TorchShardedTensor)
},
)
self.plan = plan
return self.plan
def create_global_plan(self, all_plans: List[MCoreSavePlan]) -> Tuple[List[SavePlan], Metadata]:
global_plan, metadata = super().create_global_plan(all_plans)
metadata.mcore_data = dict(ChainMap(*(plan.mcore_data for plan in all_plans)))
return global_plan, metadata
def _add_non_coordinator_iobytes_request(self, plan):
if self.is_coordinator:
return
for fqn, obj in self.state_dict.items():
if isinstance(obj, io.BytesIO):
plan.items.extend(_create_write_items(fqn, obj))
def transform_object(self, write_item: WriteItem, object: Any):
return object
class MCoreLoadPlanner(DefaultLoadPlanner):
"""Adds global shape validation to the default planner.
If global shape validation can be ignored (shouldn't!), the default
load planner can be used.
"""
def __init__(
self, *args, shapes_validation_sharded_tensors: Iterable[ShardedTensor] = (), **kwargs
) -> None:
super().__init__(*args, **kwargs)
self.shapes_validation_sharded_tensors = shapes_validation_sharded_tensors
def _validate_global_shapes(self, metadata, sharded_tensors):
for sh_ten in sharded_tensors:
loaded_shape = metadata.state_dict_metadata[sh_ten.key].size
if sh_ten.flattened_range is None or len(sh_ten.global_shape) == 1:
expected_shape = sh_ten.global_shape
else:
expected_shape = sh_ten.axis_fragmentations + (int(np.prod(sh_ten.local_shape)),)
if loaded_shape != expected_shape:
_msg = (
f'Global shape mismatch for loaded ({loaded_shape})'
f' and expected ({expected_shape}) tensor'
f' for key {sh_ten.key}'
)
raise CheckpointingException(_msg)
def create_local_plan(self) -> LoadPlan:
self._validate_global_shapes(self.metadata, self.shapes_validation_sharded_tensors)
return super().create_local_plan()
class TorchDistSaveShardedStrategy(AsyncSaveShardedStrategy):
"""Async save strategy for the PyT Distributed format.
The idea is to translate MCore ShardedTensors into PyT ShardedTensors
and use the async-adjusted torch.distributed.checkpoint saving mechanism
provided by the FileSystemWriterAsync writer.
"""
def __init__(
self, backend: str, version: int, keep_only_main_replica: bool = True, thread_count: int = 2
):
"""Adds parameters specific to PyT Distributed format
Args:
backend (str): format backend string
version (int): format version
keep_only_main_replica (bool, optional): PyT Distributed has a mechanism
for deduplication, but replica_id aware deduplication is more coherent.
Default is True (recommended to keep it).
thread_count (int, optional): threads to use during saving.
Affects the number of files in the checkpoint (saving ranks * num_threads).
"""
super().__init__(backend, version)
self.keep_only_main_replica = keep_only_main_replica
self.thread_count = thread_count
def async_save(
self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path
) -> AsyncRequest:
""" Translates MCore ShardedTensors to PyT ShardedTensors and saves in PyT Distributed format.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to save
checkpoint_dir (Path): checkpoint directory
Returns: None
"""
# Translate the state dict
(
sharded_state_dict,
flat_mapping,
rename_mapping,
) = _replace_state_dict_keys_with_sharded_keys(
sharded_state_dict, self.keep_only_main_replica
)
pyt_state_dict = mcore_to_pyt_state_dict(sharded_state_dict, False)
# Use PyT saving mechanism
writer = FileSystemWriterAsync(checkpoint_dir, thread_count=self.thread_count)
save_state_dict_ret = save_state_dict_async_plan(
pyt_state_dict,
writer,
None,
planner=MCoreSavePlanner(dedup_replicated_tensors=not self.keep_only_main_replica),
)
return self._get_save_and_finalize_callbacks(writer, save_state_dict_ret)
def _get_save_and_finalize_callbacks(self, writer, save_state_dict_ret) -> AsyncRequest:
save_fn_args = writer.get_save_function_and_args()
save_fn, save_args = save_fn_args
def finalize_fn():
save_state_dict_async_finalize(*save_state_dict_ret)
torch.distributed.barrier()
return AsyncRequest(save_fn, save_args, [finalize_fn])
def can_handle_sharded_objects(self):
return True
class TorchDistLoadShardedStrategy(LoadShardedStrategy):
"""Basic load strategy for the PyT Distributed format. """
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path) -> StateDict:
"""Translates MCore ShardedTensors to PyT ShardedTensors and loads from PyT Distributed format.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict with mapping
information to instruct loading
checkpoint_dir (Path): checkpoint directory
Returns: loaded state dict
"""
flexible_shape_sharded_tensors = [
sh_ten
for sh_ten in nested_values(sharded_state_dict)
if isinstance(sh_ten, ShardedTensor) and not sh_ten.allow_shape_mismatch
]
orig_sharded_state_dict = sharded_state_dict
# MCore state dict to PyT Distributed compatible
(
sharded_state_dict,
flat_mapping,
rename_mapping,
) = _replace_state_dict_keys_with_sharded_keys(sharded_state_dict)
pyt_state_dict = mcore_to_pyt_state_dict(sharded_state_dict, True)
# Load PyT Distributed format
checkpoint.load_state_dict(
pyt_state_dict,
FileSystemReader(checkpoint_dir),
planner=MCoreLoadPlanner(
shapes_validation_sharded_tensors=flexible_shape_sharded_tensors
),
)
pyt_state_dict = cast(
Dict[str, Union[TorchShardedTensor, List[io.BytesIO]]], pyt_state_dict
)
# Unwrap ShardedTensors and return to original state dict
mcore_state_dict = {
k: v if not isinstance(v, TorchShardedTensor) else _unwrap_pyt_sharded_tensor(v)
for k, v in pyt_state_dict.items()
}
mcore_state_dict = _replace_sharded_keys_with_state_dict_keys(
mcore_state_dict, flat_mapping, rename_mapping
)
_restore_dict_types(mcore_state_dict, orig_sharded_state_dict)
return mcore_state_dict
def load_tensors_metadata(self, checkpoint_dir: Path):
"""Uses tensors metadata stored in the metadata file."""
fs_reader = FileSystemReader(checkpoint_dir)
metadata = fs_reader.read_metadata()
mcore_data = getattr(metadata, 'mcore_data', {})
sharded_metadata = {}
for k, tp in metadata.state_dict_metadata.items():
if not isinstance(tp, TensorStorageMetadata):
continue # load only tensors
nd_orig_global_shape = mcore_data.get(k, {}).get('nd_reformulated_orig_global_shape')
if nd_orig_global_shape is None:
# Regular tensor
sharded_metadata[k] = ShardedTensor.from_rank_offsets(
k, torch.empty(tp.size, **tp.properties.__dict__, device='meta'),
).without_data()
else:
# N-D flattened tensor
unflat_ten = torch.empty(
nd_orig_global_shape, **tp.properties.__dict__, device='meta'
)
flat_ten = unflat_ten.flatten()
sharded_metadata[k] = ShardedTensor.from_rank_offsets_flat(
k,
flat_ten,
unflat_ten.shape,
flattened_range=slice(0, unflat_ten.numel()), # whole slice
).without_data()
return sharded_metadata
def can_handle_sharded_objects(self):
return True
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
default_strategies[StrategyAction.LOAD_SHARDED.value][
('torch_dist', 1)
] = TorchDistLoadShardedStrategy()
default_strategies[StrategyAction.SAVE_SHARDED.value][
('torch_dist', 1)
] = TorchDistSaveShardedStrategy('torch_dist', 1)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" 2-stage checkpoint loading. """
import os
import time
from collections import defaultdict
from dataclasses import dataclass
from functools import partial, wraps
from itertools import chain
from logging import DEBUG, INFO, StreamHandler, getLogger
from operator import attrgetter, itemgetter
from pathlib import Path
from typing import Iterable, List, NamedTuple, Optional, Tuple, Union
import torch
from ..dict_utils import dict_list_map_inplace, map_reduce, nested_values
from ..mapping import ShardedStateDict, ShardedTensor, StateDict
from .base import LoadShardedStrategy
from .tensorstore import TensorStoreLoadShardedStrategy, _load_from_array, open_ts_array
from .zarr import flatten_range, load_zarr_based_sharded_metadata
_import_trigger = None
timers = defaultdict(list)
logger = getLogger(__name__)
def timed(verbose=True):
def timed_dec(fn):
name = fn.__name__
@wraps(fn)
def wrapped(*args, **kwargs):
if verbose:
logger.debug(f'{name} init')
start = time.time()
ret = fn(*args, **kwargs)
took = time.time() - start
if verbose:
logger.debug(f'{name} took {took}s')
timers[name].append(took)
return ret
return wrapped
return timed_dec
@dataclass
class _ShardedTensorMetadata:
global_rank: int
sharded_tensor_no_data: ShardedTensor
dist_group_rank: Tuple[int] # id of distributed group
dist_group_ranks: Tuple[int] # id of distributed group
data_size: Optional[int] = None # bytes
def sharded_tensor_chunk_id(sharded_tensor: ShardedTensor):
return (
sharded_tensor.key,
sharded_tensor.global_offset,
)
class TwoStageDataParallelLoadShardedStrategy(LoadShardedStrategy):
"""Loads one checkpoint replica from storage and broadcasts to other nodes.
This strategy loads checkpoint from storage on minimal set of nodes
and distributes the checkpoint to other nodes with torch.distributed.
Loading is performed with tensorstore.
Steps:
0. (optional) create Gloo distributed groups
1. Exchange ShardedTensors metadata between all nodes
2. Align needed tensors within DP groups
3. For each globally unique tensor:
3.a) on one of the ranks load it from storage to CPU and move to CUDA
3.b) allocate CUDA tensor on other ranks
3.c) broadcast within DP group
3.d) copy tensor content to the model param location
3.e) free tensor buffers from a) and b)
Notes:
1. Loading and broadcasting is done sequentially to avoid both host and device OOMs
2. There is a lot of overlap potential between all three steps done for each tensor:
2.a) loading from storage to numpy
2.b) moving CPU tensors to CUDA
2.c) broadcast
"""
def __init__(self, data_parallel_group, cpu_transfer=True):
super().__init__()
self.cpu_transfer = cpu_transfer
self.data_parallel_group_orig = data_parallel_group
self.data_parallel_group = None if cpu_transfer else data_parallel_group
self.dp_group_ranks = tuple(
sorted(torch.distributed.get_process_group_ranks(data_parallel_group))
)
self.dp_group_rank = torch.distributed.get_rank(self.data_parallel_group_orig)
self.global_rank = torch.distributed.get_rank()
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
self.maybe_init_gloo_group()
all_tensors_sorted = self._build_load_plan(sharded_state_dict)
self._exchange_loaded_tensors(all_tensors_sorted, sharded_state_dict, checkpoint_dir)
# TODO: fix hang in summarize_load_times
# self.summarize_load_times()
return sharded_state_dict
def summarize_load_times(self):
torch.distributed.barrier()
logger.info('Checkpoint loading finished. Summary:')
# TODO: `timers` keys are not guaranteed to be the same across ranks which causes hangs
for key, times in sorted(timers.items()):
times_sum = sum(times)
max_times = torch.tensor([times_sum], device='cuda')
avg_times = torch.tensor([times_sum], device='cuda')
torch.distributed.all_reduce(max_times, op=torch.distributed.ReduceOp.MAX)
torch.distributed.all_reduce(avg_times, op=torch.distributed.ReduceOp.SUM)
avg_times /= torch.distributed.get_world_size()
if torch.distributed.get_rank() == 0:
logger.info(f'{key}: max {max_times[0]}, avg {avg_times[0]}')
@timed(verbose=False)
def load_tensor_from_storage(self, checkpoint_dir, ten_meta: _ShardedTensorMetadata):
logger.debug(f'_load_from_array({ten_meta.sharded_tensor_no_data.key}) init')
ret = _load_from_array(
ten_meta.sharded_tensor_no_data,
checkpoint_dir,
load_directly_on_device=False,
apply_flattened_range=False,
)
logger.debug(f'_load_from_array({ten_meta.sharded_tensor_no_data.key}) DONE')
return ret
@timed()
def maybe_init_gloo_group(self):
if not self.cpu_transfer:
return
all_groups = [None] * torch.distributed.get_world_size()
torch.distributed.all_gather_object(all_groups, self.dp_group_ranks)
all_groups = set(tuple(sorted(gr)) for gr in all_groups)
for group_ranks in sorted(all_groups):
gloo_pg = torch.distributed.new_group(ranks=group_ranks, backend='gloo')
if self.global_rank in group_ranks:
self.data_parallel_group = gloo_pg
assert self.dp_group_rank == torch.distributed.get_rank(self.data_parallel_group)
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
@timed()
def _build_load_plan(
self, sharded_state_dict: ShardedStateDict
) -> List[_ShardedTensorMetadata]:
local_meta = [
_ShardedTensorMetadata(
self.global_rank,
sharded_ten.without_data(),
self.dp_group_rank,
self.dp_group_ranks,
)
for sharded_ten in nested_values(sharded_state_dict)
]
all_meta = [None] * torch.distributed.get_world_size(group=self.data_parallel_group)
torch.distributed.all_gather_object(all_meta, local_meta, group=self.data_parallel_group)
all_meta = list(chain.from_iterable(all_meta))
all_tensors_sorted = self.deduplicate_chunks(all_meta)
return all_tensors_sorted
@timed()
def deduplicate_chunks(self, ten_metas: List[_ShardedTensorMetadata]):
""" Group tensors by chunk and then pick the tensor with the lowest rank.
NOTE: with proper loading overlap, loading from randomized ranks
(instead of the smallest one) could be beneficial here.
"""
ten_metas = map_reduce(
ten_metas,
key_fn=lambda meta: sharded_tensor_chunk_id(meta.sharded_tensor_no_data),
reduce_fn=partial(min, key=attrgetter('dist_group_rank')),
)
all_metas_sorted = list(map(itemgetter(1), sorted(ten_metas.items())))
return all_metas_sorted
@timed()
def _exchange_loaded_tensors(
self, ten_metas: List[_ShardedTensorMetadata], sharded_state_dict, checkpoint_dir
):
logger.debug(f'_exchange_loaded_tensors, num ten_metas: {len(ten_metas)}')
for ten_meta in ten_metas:
src_rank = torch.distributed.get_global_rank(
self.data_parallel_group, ten_meta.dist_group_rank
)
if self.dp_group_rank == ten_meta.dist_group_rank:
exchange_tensor = self.load_tensor_from_storage(checkpoint_dir, ten_meta)
if not self.cpu_transfer:
exchange_tensor = exchange_tensor.cuda()
else:
# TODO: for non-flattened ranges we could reuse the buffer from the start here
exchange_tensor = torch.empty(
ten_meta.sharded_tensor_no_data.local_shape,
device='cpu' if self.cpu_transfer else 'cuda',
dtype=ten_meta.sharded_tensor_no_data.dtype,
)
logger.debug(
f'exchange {ten_meta.sharded_tensor_no_data.key}, {exchange_tensor.shape}({exchange_tensor.numel()}), broadcast({src_rank} -> {self.dp_group_ranks})'
)
torch.distributed.broadcast(
exchange_tensor, group=self.data_parallel_group, src=src_rank
)
self._distribute_data_to_state_dict(ten_meta, exchange_tensor, sharded_state_dict)
logger.debug(f'exchange {ten_meta.sharded_tensor_no_data.key} done')
# free buffer memory
exchange_tensor = None
@timed(verbose=False)
def _distribute_data_to_state_dict(
self,
ten_meta: _ShardedTensorMetadata,
loaded_ten: torch.Tensor,
sharded_state_dict: ShardedStateDict,
):
tensor_key = sharded_tensor_chunk_id(ten_meta.sharded_tensor_no_data)
def _fill_in_data(t: Union[ShardedTensor, torch.Tensor]):
if not isinstance(t, ShardedTensor) or sharded_tensor_chunk_id(t) != tensor_key:
# already filled-in or key not matching
return t
sharded_tensor: ShardedTensor = t
x = loaded_ten
if sharded_tensor.flattened_range is not None:
x = flatten_range(sharded_tensor, x)
# Reuse existing buffer
sharded_tensor.data.data.copy_(x)
return sharded_tensor.data
dict_list_map_inplace(_fill_in_data, sharded_state_dict)
def load_tensors_metadata(self, checkpoint_dir: Path):
def get_ts_shape_dtype(path):
arr = open_ts_array(path)
return arr.shape, arr.dtype.numpy_dtype
return load_zarr_based_sharded_metadata(checkpoint_dir, get_ts_shape_dtype)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Strategies using Zarr as an underlying format. """
import logging
import os
import threading
from functools import partial
from logging import getLogger
from pathlib import Path
from typing import Callable, List, Optional, Tuple
import numpy as np
import torch
import zarr
from ..core import CheckpointingException
from ..dict_utils import dict_list_map_inplace, nested_values
from ..mapping import ShardedStateDict, ShardedTensor, is_main_replica
from .base import LoadShardedStrategy, SaveShardedStrategy, StrategyAction, default_strategies
logger = logging.getLogger(__name__)
numpy_to_torch_dtype_dict = {
np.dtype('bool'): torch.bool,
np.dtype('uint8'): torch.uint8,
np.dtype('int8'): torch.int8,
np.dtype('int16'): torch.int16,
np.dtype('int32'): torch.int32,
np.dtype('int64'): torch.int64,
np.dtype('float16'): torch.float16,
np.dtype('float32'): torch.float32,
np.dtype('float64'): torch.float64,
np.dtype('complex64'): torch.complex64,
np.dtype('complex128'): torch.complex128,
}
torch_to_numpy_dtype_dict = {v: k for k, v in numpy_to_torch_dtype_dict.items()}
try:
import tensorstore
HAS_BFLOAT16 = True
numpy_to_torch_dtype_dict[np.dtype('bfloat16')] = torch.bfloat16
torch_to_numpy_dtype_dict[torch.bfloat16] = np.dtype('bfloat16')
except ImportError:
HAS_BFLOAT16 = False
_import_trigger = None
logger = getLogger(__name__)
class ZarrSaveShardedStrategy(SaveShardedStrategy):
def save(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
sharded_tensors = list(nested_values(sharded_state_dict))
arrays = _create_or_open_zarr_arrays(sharded_tensors, checkpoint_dir)
for ten, arr in zip(sharded_tensors, arrays):
_save_to_existing_array(ten, arr)
torch.distributed.barrier()
def _create_or_open_zarr_arrays(
sharded_tensors: List[ShardedTensor], checkpoint_dir: Path
) -> List[Optional[zarr.Array]]:
""" Returns list of zarr arrays corresponding to given tensors.
For a sharded tensors that:
a) is main replica and represents the first chunk (all offsets 0), creates the Zarr array
b) is main replica but not the first chunk, opens the arrays created in (a) (possibly by other process)
c) otherwise, sets the corresponding array to None since it won't be used
Args:
sharded_tensors (List[ShardedTensor]): sharded tensors from a given rank that will be saved to checkpoint
checkpoint_dir (Path): checkpoint in which the arrays will be created
"""
arrays = []
for ten in sharded_tensors:
arr = _create_zarr_array(ten, checkpoint_dir) if _should_create_array(ten) else None
arrays.append(arr)
torch.distributed.barrier()
# Open arrays created above by other processes
for arr_idx, ten in enumerate(sharded_tensors):
if arrays[arr_idx] is not None:
# array created by this process
assert _should_create_array(ten), ten
continue
if not is_main_replica(ten.replica_id):
# this array won't be needed for saving and can stay None
continue
open_kwargs = {}
if ten.flattened_range is not None:
open_kwargs['synchronizer'] = zarr.ProcessSynchronizer(
str(checkpoint_dir / f'{ten.key}.sync')
)
arrays[arr_idx] = _open_zarr_array_verbose(checkpoint_dir / ten.key, 'r+', **open_kwargs)
return arrays
def _should_create_array(ten: ShardedTensor):
return (
is_main_replica(ten.replica_id)
and set(ten.global_offset) == {0}
and (ten.flattened_range is None or ten.flattened_range.start == 0)
)
def _save_to_existing_array(sharded_tensor: ShardedTensor, arr: Optional[zarr.Array]):
if not is_main_replica(sharded_tensor.replica_id):
return
assert arr is not None
x = sharded_tensor.data
x = x.detach().cpu()
torch.cuda.synchronize()
if x.dtype == torch.bfloat16:
x = x.float()
x = x.numpy()
x = x.astype('bfloat16')
else:
x = x.numpy()
if sharded_tensor.flattened_range is None:
arr[sharded_tensor.global_slice()] = x
else:
arr.set_coordinate_selection(sharded_tensor.global_coordinates(), x)
def _create_zarr_array(sharded_tensor: ShardedTensor, checkpoint_dir: Path):
np_dtype = torch_to_numpy_dtype_dict[sharded_tensor.dtype]
try:
arr = zarr.create(
sharded_tensor.global_shape,
dtype=np_dtype,
store=checkpoint_dir / sharded_tensor.key,
chunks=sharded_tensor.max_allowed_chunks(),
compressor=None,
fill_value=None,
write_empty_chunks=True,
)
logger.debug(f'Created a new Zarr array at {checkpoint_dir / sharded_tensor.key}')
except zarr.errors.ContainsArrayError as e:
raise CheckpointingException(
f'Array {checkpoint_dir / sharded_tensor.key} already exists'
) from e
if HAS_BFLOAT16 and np_dtype == np.dtype('bfloat16'):
arr._dtype = np_dtype
zarray = arr.store['.zarray']
arr.store['.zarray'] = zarray.replace(b'<V2', b'bfloat16')
return arr
class ZarrLoadShardedStrategy(LoadShardedStrategy):
def load(self, sharded_state_dict: ShardedStateDict, checkpoint_dir: Path):
dict_list_map_inplace(
partial(_load_from_array, checkpoint_dir=checkpoint_dir), sharded_state_dict
)
return sharded_state_dict
def load_tensors_metadata(self, checkpoint_dir: Path):
def get_zarr_shape_dtype(path):
arr = zarr.open(path, 'r')
return arr.shape, arr.dtype
return load_zarr_based_sharded_metadata(checkpoint_dir, get_zarr_shape_dtype)
def check_backend_compatibility(self, loaded_version):
pass # TODO
def check_version_compatibility(self, loaded_version):
pass # TODO
def _load_from_array(sharded_tensor: ShardedTensor, checkpoint_dir: Path):
assert isinstance(sharded_tensor, ShardedTensor), type(sharded_tensor)
arr = _open_zarr_array_verbose(checkpoint_dir / sharded_tensor.key, 'r')
if not sharded_tensor.allow_shape_mismatch and sharded_tensor.global_shape != arr.shape:
_msg = (
f'Global shape mismatch for loaded ({arr.shape})'
f' and expected ({sharded_tensor.global_shape}) tensor'
f' for key {sharded_tensor.key}'
)
raise CheckpointingException(_msg)
x = arr[sharded_tensor.global_slice()] # flattened tensors loading is delayed
return postprocess_numpy_array(x, sharded_tensor)
def _open_zarr_array_verbose(path: Path, mode: str, **open_kwargs):
try:
return zarr.open(str(path), mode, **open_kwargs)
except zarr.errors.PathNotFoundError as e:
ckpt_dir = path.parent
err_msg = f'Array {path} not found'
if ckpt_dir.exists():
ckpt_files = [f.name for f in ckpt_dir.iterdir()]
logger.debug(f'{err_msg}. Checkpoint directory {ckpt_dir} content: {ckpt_files}')
else:
err_msg += f'. Checkpoint directory {ckpt_dir} does not exist.'
raise CheckpointingException(err_msg) from e
def postprocess_numpy_array(loaded_array, sharded_tensor, apply_flattened_range=True):
x = loaded_array
if HAS_BFLOAT16 and x.dtype == np.dtype('bfloat16'):
x = x.astype(np.dtype('float32'))
x = torch.from_numpy(x)
x = x.bfloat16()
else:
x = torch.from_numpy(x)
# TODO: consider some other consistency checks
if x.shape != sharded_tensor.local_shape:
if sharded_tensor.allow_shape_mismatch:
x = pad_to_expected_shape(x, sharded_tensor)
else:
_msg = (
f'Local shape mismatch for loaded ({x.shape})'
f' and expected ({sharded_tensor.local_shape}) tensor'
f' for key {sharded_tensor.key}'
)
raise CheckpointingException(_msg)
if apply_flattened_range and sharded_tensor.flattened_range is not None:
x = flatten_range(sharded_tensor, x)
# TODO: consider cuda() tensors support
return x
def flatten_range(sharded_tensor, x):
return x.flatten()[sharded_tensor.flattened_range]
def pad_to_expected_shape(x: torch.Tensor, expected_sharded_ten: ShardedTensor):
pad_args = []
assert len(x.shape) == len(expected_sharded_ten.local_shape)
# Reversed iteration order because F.pad expects so
for x_sh, exp_sh, axis_fragm in reversed(
list(
zip(x.shape, expected_sharded_ten.local_shape, expected_sharded_ten.axis_fragmentations)
)
):
if x_sh == exp_sh:
pad_args.extend((0, 0))
elif x_sh > exp_sh:
assert (
False
), f'Expected shape ({exp_sh}) smaller than actual ({x_sh}) for {repr(expected_sharded_ten)}'
else:
pad_args.extend((0, exp_sh - x_sh))
# TODO: behavior control with envvar is for testing purposes only, remove it
if not int(os.environ.get('DIST_CKPT_PAD_REPLICATE', 0)):
return torch.nn.functional.pad(x, pad_args)
# unsqueeze and squeeze to get shapes supported by cudnn
print(f'Replicating last row for {expected_sharded_ten.key}')
if x.dtype == torch.bfloat16:
return (
torch.nn.functional.pad(x.float().unsqueeze(0), pad_args, mode='replicate')
.squeeze(0)
.bfloat16()
)
return torch.nn.functional.pad(x.unsqueeze(0), pad_args, mode='replicate').squeeze(0)
def load_zarr_based_sharded_metadata(
checkpoint_dir: Path, get_shape_dtype_fn: Callable[[str], Tuple[Tuple[int], np.dtype]]
) -> ShardedStateDict:
"""Load metadata of Zarr arrays.
Args:
checkpoint_dir (str): checkpoint root directory
get_shape_dtype_fn (str -> ((int, ...), np.dtype)): a function returning
an array shape and dtype for a given Zarr array path
"""
sharded_state_dict = {}
for subdir in checkpoint_dir.iterdir():
if not subdir.is_dir() or not (subdir / '.zarray').exists():
continue
key = subdir.name
arr_shape, arr_dtype = get_shape_dtype_fn(str(subdir))
sharded_state_dict[key] = ShardedTensor(
key,
None,
numpy_to_torch_dtype_dict[arr_dtype],
arr_shape,
arr_shape,
tuple(0 for _ in arr_shape),
tuple(1 for _ in arr_shape),
)
return sharded_state_dict
# default_strategies[StrategyAction.LOAD_SHARDED.value][('zarr', 1)] = ZarrLoadShardedStrategy()
default_strategies[StrategyAction.SAVE_SHARDED.value][('zarr', 1)] = ZarrSaveShardedStrategy(
'zarr', 1
)
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
""" Helpers for manipulating sharded tensors and sharded state dicts. """
from typing import Dict, Tuple
from .dict_utils import dict_list_map_inplace, extract_matching_values
from .mapping import (
LocalNonpersitentObject,
ShardedBase,
ShardedObject,
ShardedStateDict,
ShardedTensor,
ShardedTensorFactory,
StateDict,
)
def extract_sharded_tensors(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
""" Extract a dict consisting of only ShardedTensor objects from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedTensor objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor (keeping the original state dict structure)
- state dict with all objects other than ShardedTensor (keeping the original state dict structure)
"""
return extract_matching_values(sharded_state_dict, lambda v: isinstance(v, ShardedTensor))
def extract_sharded_tensors_and_factories(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
""" Extract a dict consisting of only ShardedTensor and ShardedTensorFactory objects from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedTensor and ShardedTensorFactory objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor and ShardedTensorFactory (keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(
sharded_state_dict, lambda v: isinstance(v, (ShardedTensor, ShardedTensorFactory))
)
def extract_sharded_tensors_or_nonpersistent(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
""" Extract a dict consisting of only ShardedTensor, ShardedTensorFactory and LocalNonpersitentObject
objects from a given state dict with any objects.
Args:
sharded_state_dict: state dict possibly containing ShardedTensor, ShardedTensorFactory and LocalNonpersitentObject objects
Returns:
Tuple[ShardedStateDict, StateDict]: tuple of:
- state dict with all ShardedTensor, ShardedTensorFactory and LocalNonpersitentObject (keeping the original state dict structure)
- state dict with all other objects (keeping the original state dict structure)
"""
return extract_matching_values(
sharded_state_dict,
lambda v: isinstance(v, (ShardedTensor, LocalNonpersitentObject, ShardedTensorFactory)),
)
def extract_sharded_base(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
return extract_matching_values(sharded_state_dict, lambda v: isinstance(v, ShardedBase),)
def extract_nonpersistent(
sharded_state_dict: ShardedStateDict,
) -> Tuple[ShardedStateDict, StateDict]:
return extract_matching_values(
sharded_state_dict, lambda v: isinstance(v, LocalNonpersitentObject),
)
def add_prefix_for_sharding(sharded_state_dict: ShardedStateDict, prefix: str):
""" Prepend a given prefix to all ShardedBase objects in a given state dict *in-place*.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict
prefix (str): prefix to be prepended
Returns:
None: state dict is modified in-place
"""
def add_prefix(t):
if isinstance(t, ShardedBase):
t.key = f'{prefix}{t.key}'
return t
dict_list_map_inplace(add_prefix, sharded_state_dict)
def replace_prefix_for_sharding(
sharded_state_dict: ShardedStateDict, old_prefix: str, new_prefix: str
):
""" Replaces the given prefix in *all* sharded keys in a given state dict.
Errors out if some key does not begin with a given prefix.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to replace keys in
old_prefix (str): prefix to be replaced in each key
new_prefix (str): new prefix
Returns:
None: state dict is modified in place
"""
def _replace_prefix(x):
if isinstance(x, (ShardedTensor, ShardedTensorFactory, ShardedObject)):
if not x.key.startswith(old_prefix):
raise ValueError(f'Expected {x.key} to begin with prefix {old_prefix}')
x.key = f'{new_prefix}{x.key[len(old_prefix):]}' # str.removeprefix in Python >= 3.9
return x
dict_list_map_inplace(_replace_prefix, sharded_state_dict)
def apply_prefix_mapping(sharded_state_dict: ShardedStateDict, prefix_map: Dict[str, str]):
""" Replaces prefixes *only in keys matching* with one of prefixes in the map.
Args:
sharded_state_dict (ShardedStateDict): sharded state dict to replace keys in
prefix_map (Dict[str, str]): map of old->new prefixes. The first matching prefix for each key is used
Returns:
None: state dict is modified in place
"""
def _replace_prefixes(x):
if not isinstance(x, (ShardedTensor, ShardedTensorFactory, ShardedObject)):
return x
for old_prefix, new_prefix in prefix_map.items():
if x.key.startswith(old_prefix):
x.key = (
f'{new_prefix}{x.key[len(old_prefix):]}' # str.removeprefix in Python >= 3.9
)
break
return x
dict_list_map_inplace(_replace_prefixes, sharded_state_dict)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from .distributed_data_parallel import DistributedDataParallel
from .distributed_data_parallel_config import DistributedDataParallelConfig
from .finalize_model_grads import finalize_model_grads
from .param_and_grad_buffer import ParamAndGradBuffer, shard_buffer
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
from contextlib import contextmanager
from typing import Dict, Optional
import torch
from .. import parallel_state
from ..transformer.module import MegatronModule
from ..transformer.transformer_config import TransformerConfig
from ..utils import log_single_rank
from .distributed_data_parallel_config import DistributedDataParallelConfig
from .param_and_grad_buffer import ParamAndGradBuffer
logger = logging.getLogger(__name__)
class DistributedDataParallel(MegatronModule):
"""
DDP wrapper which stores grads in contiguous buffers. Also has option of overlapping
communication with backprop computation by breaking up full model's gradients into smaller
buckets and running all-reduce / reduce-scatter on each bucket asynchronously. This class
also provides the option to do the gradient accumulation in a type other than the param type
(e.g., fp32 for a bf16 model).
Args:
config: Transformer config object.
ddp_config: DistributedDataParallel config object.
module: Underlying model.
disable_bucketing: If true, force assign all parameters to a single bucket. If false,
use standard bucketing policy: assign parameters to smaller buckets and all-reduce
per bucket _if_ overlap_grad_reduce is True and pp_rank is 0.
"""
def __init__(
self,
config: TransformerConfig,
ddp_config: DistributedDataParallelConfig,
module: torch.nn.Module,
disable_bucketing: bool = False,
):
super().__init__(config=config)
self.module = module
# If bucket_size is not provided as an input, use sane default.
# If using very large dp_sizes, make buckets larger to ensure that chunks used in NCCL
# ring-reduce implementations are large enough to remain bandwidth-bound rather than
# latency-bound.
if ddp_config.bucket_size is None:
ddp_config.bucket_size = max(
40000000, 1000000 * parallel_state.get_data_parallel_world_size()
)
# Set bucket_size to infinity if overlap_grad_reduce is False.
if not ddp_config.overlap_grad_reduce:
ddp_config.bucket_size = None
self.ddp_config = ddp_config
log_single_rank(
logger,
logging.INFO,
f'Setting up DistributedDataParallel with config {self.ddp_config}',
)
# Turn off bucketing if we are on a pipeline stage that is not the first (since
# data-parallel communication on these stages is not on the critical path), or if
# disable_bucketing is True (e.g., we might not want to break up model parameters
# into buckets for model chunks after the first in the interleaved schedule).
self.bucket_size = self.ddp_config.bucket_size
if parallel_state.get_pipeline_model_parallel_rank() > 0:
self.bucket_size = None
if disable_bucketing:
self.bucket_size = None
self.module = module
self.param_to_buffer = {}
# Group parameters by their gradient type.
param_to_name = {}
dense_params = []
expert_parallel_params = []
for name, param in self.module.named_parameters():
if not param.requires_grad:
continue
param.grad_added_to_main_grad = False
param_to_name[param] = name
if getattr(param, 'allreduce', True):
dense_params.append(param)
else:
expert_parallel_params.append(param)
def allocate_buffers_for_parameters(
input_params, data_parallel_group, gradient_scaling_factor,
):
param_and_grad_dtype_to_params = {}
# Group parameters by their gradient type.
for param in input_params:
if not param.requires_grad:
continue
param_dtype = param.dtype
grad_dtype = torch.float if self.ddp_config.grad_reduce_in_fp32 else param.dtype
params = param_and_grad_dtype_to_params.get((param_dtype, grad_dtype), [])
params.append(param)
param_and_grad_dtype_to_params[(param_dtype, grad_dtype)] = params
if not config.calculate_per_token_loss:
target_gradient_scaling_factor = 1.0 / parallel_state.get_data_parallel_world_size()
if self.ddp_config.average_in_collective:
# Collective is averaging gradients in collective with data_parallel_group.
assert (
gradient_scaling_factor
/ torch.distributed.get_world_size(group=data_parallel_group)
== target_gradient_scaling_factor
)
else:
assert gradient_scaling_factor == target_gradient_scaling_factor
# Allocate the grad buffers and map the grads.
buffers = []
for (param_dtype, grad_dtype), params in param_and_grad_dtype_to_params.items():
buffers.append(
ParamAndGradBuffer(
self.ddp_config,
param_dtype,
grad_dtype,
params,
data_parallel_group,
self.bucket_size,
param_to_name,
gradient_scaling_factor,
)
)
for param in params:
self.param_to_buffer[param] = buffers[-1]
return buffers
if config.calculate_per_token_loss:
gradient_scaling_factor = 1.0
expert_gradient_scaling_factor = 1.0
else:
if self.ddp_config.average_in_collective:
gradient_scaling_factor = 1.0
expert_gradient_scaling_factor = (
1.0 / parallel_state.get_expert_model_parallel_world_size()
)
else:
data_parallel_world_size = parallel_state.get_data_parallel_world_size()
gradient_scaling_factor = 1.0 / data_parallel_world_size
expert_gradient_scaling_factor = 1.0 / data_parallel_world_size
# Allocate the param+grad buffers for dense params' grads.
self.buffers = allocate_buffers_for_parameters(
dense_params,
parallel_state.get_data_parallel_group(with_context_parallel=True),
gradient_scaling_factor=gradient_scaling_factor,
)
# Allocate separate param+grad buffers for expert parallel params' grads.
self.expert_parallel_buffers = allocate_buffers_for_parameters(
expert_parallel_params,
parallel_state.get_data_modulo_expert_parallel_group(),
gradient_scaling_factor=expert_gradient_scaling_factor,
)
# Delete references to weight_tensor if they exist since we don't want two parameter copies
# if we re-mapped parameters (which happens when we use the distributed optimizer).
# This is a temporary workaround around a TE bug that is fixed with
# https://github.com/NVIDIA/TransformerEngine/pull/719.
if self.ddp_config.use_distributed_optimizer:
@torch.no_grad()
def unmap_weight_tensor(m):
if hasattr(m, 'weight_tensor'):
m.weight_tensor = None
self.module.apply(unmap_weight_tensor)
# Register backward hook.
# Accumulation function for the gradients need to be stored so they
# don't go out of scope.
self.grad_accs = []
for param in self.module.parameters():
if param.requires_grad:
# Expand so we get access to grad_fn.
param_tmp = param.expand_as(param)
# Get the gradient accumulator function.
grad_acc = param_tmp.grad_fn.next_functions[0][0]
grad_acc.register_hook(self._make_param_hook(param, self.param_to_buffer))
self.grad_accs.append(grad_acc)
def forward(self, *inputs, **kwargs):
"""
Calls the wrapped module's forward() method.
"""
return self.module(*inputs, **kwargs)
def _make_param_hook(
self,
param: torch.nn.Parameter,
param_to_buffer: Dict[torch.nn.Parameter, ParamAndGradBuffer],
):
"""
Creates the all-reduce / reduce-scatter hook for backprop.
"""
def param_hook(*unused):
if param.requires_grad:
if self.ddp_config.overlap_grad_reduce:
assert (
param.grad is not None
), 'param.grad being None is not safe when overlap_grad_reduce is True'
if param.grad is not None and (
not param.grad_added_to_main_grad or getattr(param, 'zero_out_wgrad', False)
):
param.main_grad.add_(param.grad.data)
param.grad = None
if self.ddp_config.overlap_grad_reduce:
param_to_buffer[param].register_grad_ready(param)
return param_hook
@contextmanager
def no_sync(self):
"""
Context manager that turns off gradient synchronization.
"""
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.is_last_microbatch = False
try:
yield
finally:
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.is_last_microbatch = True
def start_grad_sync(self, *unused):
"""
Initiates grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, dispatches asynchronous communication
calls. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.start_grad_sync()
def scale_gradients(self, scaling_factor: float) -> None:
"""Scale all gradients inside the buffers by `scaling_factor`."""
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.scale_gradients(scaling_factor)
def finish_grad_sync(self):
"""
Finishes grad sync (all-reduce or reduce-scatter) communication operations
for all model gradients.
When overlap_grad_reduce is set to True, waits for asynchronous communication
calls to complete. When overlap_grad_reduce is set to False, calls synchronous
communication ops.
"""
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.finish_grad_sync()
def zero_grad_buffer(self):
"""
Zeros out all grad buffers. Needs to be called at the beginning of each
training iteration.
"""
for param in self.module.parameters():
if param.requires_grad:
param.grad_added_to_main_grad = False
for buffer in self.buffers + self.expert_parallel_buffers:
buffer.reset()
def broadcast_params(self):
"""
Syncs parameters across all DP ranks.
"""
for param in self.module.parameters():
is_expert_parallel = not getattr(param, 'allreduce', True)
if is_expert_parallel:
data_parallel_group = parallel_state.get_data_modulo_expert_parallel_group()
else:
data_parallel_group = parallel_state.get_data_parallel_group(
with_context_parallel=True
)
torch.distributed.broadcast(
param.data,
src=torch.distributed.get_global_rank(data_parallel_group, 0),
group=data_parallel_group,
)
def state_dict(self, prefix='', keep_vars=False):
"""
Returns a dictionary containing references to the whole state of the
wrapped module.
Both parameters and persistent buffers (e.g. running averages) are included.
Keys are corresponding parameter and buffer names. Parameters and buffers
set to None are not included.
"""
return self.module.state_dict(prefix=prefix, keep_vars=keep_vars)
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""
Returns wrapped module's state_dict for checkpoint saving.
"""
return self.module.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars)
def load_state_dict(self, state_dict, strict=True):
"""
Copies parameters and buffers from state_dict into the wrapped module and its
descendants. If strict is True, then the keys of state_dict must exactly match
the keys returned by this module’s state_dict() function.
"""
self.module.load_state_dict(state_dict, strict=strict)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
from typing import Optional
@dataclass
class DistributedDataParallelConfig:
"""Configuration for DistributedDataParallel."""
grad_reduce_in_fp32: bool = False
"""If true, reduce grads in fp32."""
overlap_grad_reduce: bool = False
"""If true, overlap grad all-reduce / reduce-scatter with backward compute."""
use_distributed_optimizer: bool = False
"""If true, issue reduce-scatter collectives to aggregate gradients and clean up
originally allocated model parameters, otherwise issue all-reduce collectives.
"""
check_for_nan_in_grad: bool = False
""" If true, check for NaNs in gradients _before_ communication collective."""
bucket_size: Optional[int] = None
"""Maximum number of parameters in each bucket. If unspecified, MCore uses a default
value of max(40000000, 1000000 * dp_size) parameters (larger DP sizes need larger
buckets to ensure collectives do not become latency-bound)."""
average_in_collective: bool = False
"""If true, compute average in collective directly, as opposed to dividing by the
dp_size first and then computing sum in the collective."""
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from typing import List, Optional
import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from .. import parallel_state
from ..transformer.transformer_config import TransformerConfig
from ..utils import get_attr_wrapped_model, get_model_config
def _allreduce_word_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce word embedding grads.
Reduce grads across first and last stages to ensure that word_embeddings parameters stay in
sync. This should only run for models that support pipelined model parallelism (BERT and GPT).
"""
if (
parallel_state.is_rank_in_embedding_group(ignore_virtual=True)
and parallel_state.get_pipeline_model_parallel_world_size() > 1
):
if parallel_state.is_pipeline_first_stage(ignore_virtual=True):
model_module = model[0]
elif parallel_state.is_pipeline_last_stage(ignore_virtual=True):
model_module = model[-1]
else: # We do not support the interleaved schedule for T5 yet.
model_module = model[0]
# Look for module with 'pre_process' attribute to get around the fact that DDP and
# other wrapper classes inherit from non-core MegatronModule that has
# 'share_embeddings_and_output_weights' and 'shared_embedding_or_output_weight'
# attributes already, causing get_attr_wrapped_model() to not unwrap anything here.
# TODO: Clean this up once the wrapper classes inherit from core MegatronModule.
model_module = get_attr_wrapped_model(model_module, 'pre_process', return_model_obj=True)
if model_module.share_embeddings_and_output_weights:
weight = model_module.shared_embedding_or_output_weight()
grad = weight.main_grad
torch.distributed.all_reduce(grad, group=parallel_state.get_embedding_group())
def _allreduce_position_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce position_embeddings grad across first (encoder) and split (decoder) stages to
ensure that position embeddings parameters stay in sync. This should only run for T5 models
with pipeline parallelism.
"""
if (
parallel_state.is_rank_in_position_embedding_group()
and parallel_state.get_pipeline_model_parallel_world_size() > 1
and config.pipeline_model_parallel_split_rank is not None
):
model_module = model[0]
grad = get_attr_wrapped_model(
model_module, 'language_model.embedding.position_embeddings.weight.main_grad'
)
torch.distributed.all_reduce(grad, group=parallel_state.get_position_embedding_group())
def _allreduce_embedding_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce both word and position embeddings.
"""
_allreduce_word_embedding_grads(model, config)
_allreduce_position_embedding_grads(model, config)
def _allreduce_layernorm_grads(model: List[torch.nn.Module], config: TransformerConfig):
"""
All-reduce layernorm grads (for sequence parallelism).
"""
# All-reduce layernorm parameters across model parallel nodes
# when sequence parallelism is used
if parallel_state.get_tensor_model_parallel_world_size() > 1 and (
config.sequence_parallel or config.qk_layernorm
):
grads = []
for model_chunk in model:
for name, param in get_attr_wrapped_model(model_chunk, 'named_parameters')():
if (
param.requires_grad
and getattr(param, 'sequence_parallel', False)
or 'q_layernorm' in name
or 'k_layernorm' in name
):
grad = param.main_grad
grads.append(grad.data)
if grads:
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=parallel_state.get_tensor_model_parallel_group()
)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
def finalize_model_grads(model: List[torch.nn.Module], num_tokens: Optional[torch.Tensor] = None):
"""
All-reduce all model grads across DP replicas, layernorm grads for sequence parallelism,
embedding grads across first and last pipeline stages (if not tied),
scale gradients by `num_tokens`.
"""
config = get_model_config(model[0])
# All-reduce / reduce-scatter across DP replicas.
if config.timers is not None:
config.timers('all-grads-sync', log_level=1).start(barrier=config.barrier_with_L1_time)
for model_chunk in model:
model_chunk.finish_grad_sync()
if config.timers is not None:
config.timers('all-grads-sync').stop()
# All-reduce layer-norm grads (for sequence parallelism).
if config.timers is not None:
config.timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=config.barrier_with_L1_time
)
_allreduce_layernorm_grads(model, config)
if config.timers is not None:
config.timers('layernorm-grads-all-reduce').stop()
# All-reduce embedding grads (for pipeline parallelism).
if config.timers is not None:
config.timers('embedding-grads-all-reduce', log_level=1).start(
barrier=config.barrier_with_L1_time
)
_allreduce_embedding_grads(model, config)
if config.timers is not None:
config.timers('embedding-grads-all-reduce').stop()
# normalize gradients for per-token loss normalization.
# if we are using by the number of tokens, then we use that as a divisor. this number
# will be the total number of non-padded tokens in the global batch.
if num_tokens is not None:
# the number of tokens is only present on the last stage, so broadcast it
# to the other ranks in the pipeline parallel group.
torch.distributed.broadcast(
num_tokens,
src=parallel_state.get_pipeline_model_parallel_last_rank(),
group=parallel_state.get_pipeline_model_parallel_group(),
)
# all-reduce across DP ranks.
torch.distributed.all_reduce(num_tokens, group=parallel_state.get_data_parallel_group())
for model_chunk in model:
if num_tokens > 0:
scaling = 1.0 / num_tokens
model_chunk.scale_gradients(scaling)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment