Commit 523ec9cc authored by wangsen's avatar wangsen
Browse files

all

parents
Pipeline #1668 failed with stages
in 0 seconds
kill 150486
kill 150491
kill 150497
kill 150501
kill 150503
kill 150504
kill 150505
kill 150522
kill 150526
kill 150529
kill 150534
kill 150535
kill 150539
kill 150541
kill 150544
kill 150549
kill 150551
kill 150554
kill 150556
kill 150561
kill 150562
kill 150567
kill 150568
kill 150571
kill 150575
kill 150576
kill 150581
kill 150582
kill 150583
kill 150589
kill 150590
kill 150593
kill 150597
kill 150598
kill 150600
kill 150604
kill 150606
kill 150608
kill 150611
kill 150615
kill 150617
kill 150619
kill 150621
kill 150624
kill 150626
kill 150630
kill 150633
kill 150634
kill 150635
kill 150638
kill 150643
kill 150644
kill 150645
kill 150647
kill 150653
kill 150654
kill 150655
kill 150658
kill 150663
kill 150664
kill 150665
kill 150667
kill 150673
kill 150674
kill 150675
kill 150677
kill 150683
kill 150684
kill 150685
kill 150686
kill 150693
kill 150694
kill 150695
kill 150696
kill 150703
kill 150704
kill 150705
kill 150706
kill 150707
kill 150714
kill 150716
kill 150717
kill 150718
kill 150720
kill 150726
kill 150728
kill 150730
kill 150731
kill 150736
kill 150738
kill 150740
kill 150742
kill 150744
kill 150748
kill 150749
kill 150751
kill 150752
kill 150756
kill 150757
kill 150762
kill 150763
kill 150764
kill 150765
kill 150772
kill 150773
kill 150774
kill 150775
kill 150778
kill 150779
kill 150781
kill 150788
kill 150789
kill 150790
kill 150793
kill 150795
kill 150797
kill 150798
kill 150803
kill 150804
kill 150806
kill 150807
kill 150813
kill 150814
kill 150816
kill 150819
kill 150822
kill 150823
kill 150828
kill 150830
kill 150831
kill 150832
kill 150833
kill 150838
kill 150839
kill 150842
kill 150843
kill 150844
kill 150845
kill 150850
kill 150851
kill 150854
kill 150855
kill 150856
kill 150857
kill 150861
kill 150862
kill 150867
kill 150868
kill 150871
kill 150872
kill 150873
kill 150876
kill 150878
kill 150880
kill 150882
kill 150883
kill 150885
kill 150887
kill 150890
kill 150893
kill 150894
kill 150895
kill 150899
kill 150900
kill 150903
kill 150904
kill 150906
kill 150909
kill 150910
kill 150914
kill 150915
kill 150918
kill 150919
kill 150921
kill 150923
kill 150926
kill 150927
kill 150929
kill 150930
kill 150934
kill 150936
kill 150937
kill 150938
kill 150942
kill 150944
kill 150945
kill 150946
kill 150949
kill 150953
kill 150955
kill 150956
kill 150959
kill 150961
kill 150962
kill 150964
kill 150967
kill 150969
kill 150970
kill 150971
kill 150975
kill 150976
kill 150977
kill 150981
kill 150982
kill 150983
kill 150987
kill 150988
kill 150990
kill 150993
kill 150994
kill 150996
kill 150998
kill 151000
kill 151003
kill 151004
kill 151005
kill 151009
kill 151010
kill 151011
kill 151016
kill 151017
kill 151020
kill 151021
kill 151024
kill 151026
kill 151027
kill 151031
kill 151033
kill 151035
kill 151037
kill 151039
<div align="center">
Megatron-LM & Megatron-Core
===========================
<h4>GPU optimized techniques for training transformer models at-scale</h4>
[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://docs.nvidia.com/megatron-core/developer-guide/latest/index.html)
[![version](https://img.shields.io/badge/release-0.5.0-green)](./setup.py)
[![license](https://img.shields.io/badge/license-OpenBSD-blue)](./LICENSE)
<div align="left">
# Latest News
- **[2024/1 Announcement]** NVIDIA has released the core capabilities in **Megatron-LM** into [**Megatron-Core**](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/core) in this repository. Megatron-Core expands upon Megatron-LM's GPU-optimized techniques with more cutting-edge innovations on system-level optimizations, featuring composable and modular APIs. Explore the [Megatron-Core intro](#megatron-core) for more details.
# Table of Contents
* [Megatron Overview](#megatron-overview)
* [Megatron-LM](#megatron-lm)
* [Megatron-Core](#megatron-core)
* [Training Speed and Scalability](#training-speed-and-scalability)
* [Setup](#setup)
* [Downloading Checkpoints](#downloading-checkpoints)
* [Usage](#usage)
* [Training](#training)
* [Data Preprocessing](#data-preprocessing)
* [BERT Pretraining](#bert-pretraining)
* [GPT Pretraining](#gpt-pretraining)
* [T5 Pretraining](#t5-pretraining)
* [Distributed Pretraining](#distributed-pretraining)
* [Activation Checkpointing and Recomputation](#activation-checkpointing-and-recomputation)
* [Distributed Optimizer](#distributed-optimizer)
* [FlashAttention](#flashattention)
* [GPT-3 Example](#gpt-3-example)
* [Retro and InstructRetro](#retro-and-instructretro)
* [Evaluation and Tasks](#evaluation-and-tasks)
* [GPT Text Generation](#gpt-text-generation)
* [GPT Evaluation](#gpt-evaluation)
* [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
* [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
* [BERT Task Evaluation](#bert-task-evaluation)
* [RACE Evaluation](#race-evaluation)
* [MNLI Evaluation](#mnli-evaluation)
* [Llama-2 Inference and Finetuning](#llama-2-inference-and-finetuning)
* [Datasets](#datasets)
* [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
* [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
* [Reproducibility](#reproducibility)
* [Projects using Megatron](#projects-using-megatron)
# Megatron Overview
This repository comprises two essential components: **Megatron-LM** and **Megatron-Core**. Megatron-LM serves as a ressearch-oriented framework leveraging Megatron-Core for large language model (LLM) training. Megatron-Core, on the other hand, is a library of GPU optimized training techniques that comes with formal product support including versioned APIs and regular releases. You can use Megatron-Core alongside Megatron-LM or [Nvidia NeMo Framework](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/nemo_megatron/mcore_customization.html) for an end-to-end and cloud-native solution. Alternatively, you can integrate Megatron-Core's building blocks into your preferred training framework.
## Megatron-LM
First introduced in 2019, Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf), [2](https://arxiv.org/pdf/2104.04473.pdf), and [3](https://arxiv.org/pdf/2205.05198)) sparked a wave of innovation in the AI community, enabling researchers and developers to utilize the underpinnings of this library to further LLM advancements. Today, many of the most popular LLM developer frameworks have been inspired by and built directly leveraging the open-source Megatron-LM library, spurring a wave of foundation models and AI startups. Some of the most popular LLM frameworks built on top of Megatron-LM include [Colossal-AI](https://github.com/hpcaitech/ColossalAI), [HuggingFace Accelerate](https://github.com/huggingface/accelerate), and [NVIDIA NeMo Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/). A list of projects that have directly used Megatron can be found [here](#projects-using-megatron).
## Megatron-Core
Megatron-Core is a newly released open-source PyTorch-based library that further expands the collections of GPU optimized techniques inherited from Megatron-LM with more cutting-edge innovations on system-level optimizations. It abstracts them into composable and modular APIs, allowing full flexibility for developers and model researchers to train custom transformers at-scale on NVIDIA accelerated computing infrastructure. This library is compatible with all NVIDIA Tensor Core GPUs, including FP8 acceleration support for NVIDIA Hopper architectures.
Megatron-Core offers the core building blocks such as attention mechanisms, transformer blocks and layers, normalization layers, and embedding techniques. Additional functionality like activation recomputation, distributed checkpointing is also natively built-in to the library. The building blocks and functionality are all GPU optimized, and can be built with advanced parallelization strategies for optimal training speed and stability on NVIDIA Accelerated Computing Infrastructure. Another key component of the Megatron-Core library includes advanced model parallelism techniques ([tensor](https://arxiv.org/pdf/1909.08053.pdf), [sequence](https://arxiv.org/pdf/2205.05198), and [pipeline](https://arxiv.org/pdf/2104.04473.pdf)). Currently, popular LLM model architectures based on Decoder (ex. [GPT](https://arxiv.org/abs/2005.14165), Llama), Encoder (ex. [BERT](https://arxiv.org/pdf/1810.04805.pdf)), Encoder-Decoder (ex. [T5](https://arxiv.org/abs/1910.10683)), Retrieval Enhanced Transformers (ex. RETRO), and Mixture of Experts (MoE) can easily be built with performance and efficiency at large compute scales. Developers can also use Megatron-Core's transformer blocks and functional APIs to build their own custom layers.
# Training Speed and Scalability
Our codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism. To demonstrate how the code scales with multiple GPUs and model sizes, we consider GPT models from 1 billion all the way to 1 trillion parameters. All models use a vocabulary size of 51,200 and a sequence length of 2048. We vary hidden size, number of attention heads, and number of layers to arrive at a specific model size. As the model size increases, we also modestly increase the batch size. We leverage [NVIDIA's Selene supercomputer](https://www.top500.org/system/179842/) to perform scaling studies and use up to 3072 [A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for the largest model. Each cluster node has 8 NVIDIA 80GB A100 GPUs. The graph below shows that we scale nearly linear up to 1 trillion parameter models running on 3072 GPUs. Note that these results are from benchmark runs and these models were not trained to convergence; however, the FLOPs are measured for end-to-end training, i.e., includes all operations including data loading, optimization, and even logging.
![Scaling Graph](images/Achieved_petaFLOPs.png)
The following table shows both model (MFU) and hardware (HFU) FLOPs utilization for select configurations up to 1T parameters (see [our paper](https://arxiv.org/pdf/2205.05198) for a description of how these are calculated). As the model size increases, we achieve better GPU utilization. For the one trillion parameter model, we reach a MFU and HFU of 56.3% and 57.0%, respectively. Note that these numbers are also measured on benchmark runs and in this case are measured using a data parallel size of one. Data parallelism introduces some overhead due to the gradient all-reduce required between the data parallel groups. However, for large transformer models, this overhead is not large and can almost entirely eliminated by overlapping the gradient all-reduce with backpropagation.
| Model Size | Model FLOPs Utilization | Hardware FLOPs Utilization |
| :---: | :---: | :---: |
| 22B | 41.5% | 43.7% |
| 175B | 51.4% | 52.8% |
| 530B | 56.0% | 57.0% |
| 1T | 56.3% | 57.0% |
# Setup
We strongly recommend using the latest release of [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) with DGX nodes. If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start) releases. Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
You can launch an instance of the PyTorch container and mount Megatron, your dataset, and checkpoints with the following Docker commands:
```
docker pull nvcr.io/nvidia/pytorch:xx.xx-py3
docker run --gpus all -it --rm -v /path/to/megatron:/workspace/megatron -v /path/to/dataset:/workspace/dataset -v /path/to/checkpoints:/workspace/checkpoints nvcr.io/nvidia/pytorch:xx.xx-py3
```
## Downloading Checkpoints
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints to evaluate or for finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using:
<pre>
BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
</pre>
The models require vocabulary files to run. The BERT WordPiece vocab file can be extracted from Google's pretrained BERT models: [uncased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt), [cased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt). The GPT [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
# Usage
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation
However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.
We've provided several scripts for pretraining both BERT and GPT in the [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
# Training
## Data Preprocessing
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>
The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.
The loose json is then processed into a binary format for training. To convert the json into mmap format use `preprocess_data.py`. An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-bert \
--vocab-file bert-vocab.txt \
--tokenizer-type BertWordPieceLowerCase \
--split-sentences
</pre>
The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.
For T5 use the same preprocessing as BERT, perhaps renaming it to:
<pre>
--output-prefix my-t5 \
</pre>
Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
<pre>
python tools/preprocess_data.py \
--input my-corpus.json \
--output-prefix my-gpt2 \
--vocab-file gpt2-vocab.json \
--tokenizer-type GPT2BPETokenizer \
--merge-file gpt2-merges.txt \
--append-eod
</pre>
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT training, use the longer name without the extension as `--data-path`.
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).
## BERT Pretraining
The [`examples/pretrain_bert.sh`](./examples/pretrain_bert.sh) script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--lr-warmup-fraction`. While this is single GPU training, the batch size specified by `--micro-batch-size` is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches `global-batch-size` which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`). We use `train-iters` as the training iterations requested. Alternatively, one can provide `--train-samples` which is total number of samples to train on. If this option is present, then instead of providing `--lr-decay-iters`, one will need to provide `--lr-decay-samples`.
The logging, checkpoint-saving, and evaluation interval options are specified. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.
Further command line arguments are described in the source file [`arguments.py`](./megatron/training/arguments.py).
To run `examples/pretrain_bert.sh`, make any desired modifications including setting the environment variables for `CHECKPOINT_PATH`, `VOCAB_FILE`, and `DATA_PATH`. Make sure to set these variables to their paths in the container. Then launch the container with Megatron and necessary paths mounted (as explained in [Setup](#setup)) and run the example script.
## GPT Pretraining
The `examples/pretrain_gpt.sh` script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay. Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.
Further command line arguments are described in the source file [`arguments.py`](./megatron/training/arguments.py).
`examples/pretrain_gpt.sh` can be launched the same way as described for BERT. Set the env vars and make any other modifications, launch the container with appropriate mounts, and run the script.
## T5 Pretraining
Very similar to BERT and GPT, the `examples/pretrain_t5.sh` script runs single GPU "base" (~220M parameter) T5 pretraining. The primary difference from BERT and GPT is the addition of the following arguments to accommodate the T5 architecture:
* `--kv-channels` sets the inner dimension of the "key" and "value" matrices of all attention mechanisms in the model. For BERT and GPT this defaults to the hidden size divided by the number of attention heads, but can be configured for T5.
* `--ffn-hidden-size` sets the hidden size in the feed-forward networks within a transformer layer. For BERT and GPT this defaults to 4 times the transformer hidden size, but can be configured for T5.
* `--encoder-seq-length` and `--decoder-seq-length` set the sequence length for the encoder and decoder separately.
All of the other arguments remain as they were for BERT and GPT pretraining. Run this example with the same steps described above for the other scripts.
## Distributed Pretraining
The `examples/pretrain_{bert,gpt,t5}_distributed.sh` scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables. See the official PyTorch [documentation](https://pytorch.org/docs/stable/elastic/run.html#launcher-api) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multi-node training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the `torchrun` elastic launcher (equivalent to `python -m torch.distributed.run`) are the only additional requirements to adopt distributed training. See any of `examples/pretrain_{bert,gpt,t5}_distributed.sh` for more details.
We use two types of parallelism: data and model parallelism. Our data parallelism implementation is in `megatron/core/distributed`, and supports overlapping of the gradient reduction with the backward pass when the `--overlap-grad-reduce` command-line option is used.
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use the first dimension, tensor model parallelism (splitting execution of a single transformer module over multiple GPUs, see Section 3 of [our paper](https://arxiv.org/pdf/1909.08053.pdf)), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use the second dimension, sequence parallelism, specify `--sequence-parallel`, which also requires tensor model parallelism to be enabled because it splits across the same GPUs (more details in Section 4.2.2 of [our paper](https://arxiv.org/pdf/2205.05198.pdf)).
To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches, see Section 2.2 of [our paper](https://arxiv.org/pdf/2104.04473.pdf)), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
We have examples of how to use these two different forms of model parallelism the example scripts ending in `distributed_with_mp.sh`.
Other than these minor changes, the distributed training is identical to the training on a single GPU.
The interleaved pipelining schedule (more details in Section 2.2.2 of [our paper](https://arxiv.org/pdf/2104.04473.pdf)) can be enabled using the `--num-layers-per-virtual-pipeline-stage` argument, which controls the number of transformer layers in a virtual stage (by default with the non-interleaved schedule, each GPU will execute a single virtual stage with `NUM_LAYERS / PIPELINE_MP_SIZE` transformer layers). The total number of layers in the transformer model should be divisible by this argument value. Additionally, the number of microbatches in the pipeline (computed as `GLOBAL_BATCH_SIZE / (DATA_PARALLEL_SIZE * MICRO_BATCH_SIZE)`) should be divisible by the `PIPELINE_MP_SIZE` when using this schedule (this condition is checked in an assertion in the code). The interleaved schedule is not supported for pipelines with 2 stages (`PIPELINE_MP_SIZE=2`).
## Activation Checkpointing and Recomputation
To reduce GPU memory usage when training a large model, we support various forms of activation checkpointing and recomputation. Instead of all activations being stored in memory to be used during backprop, as was traditionally the case in deep learning models, only activations at certain "checkpoints" in the model are retained (or stored) in memory, and the other activations are recomputed on-the-fly when needed for backprop. Note that this kind of checkpointing, *activation* checkpointing, is very different from the checkpointing of model parameters and optimizer state, which is mentioned elsewhere.
We support two levels of recompute granularity: `selective` and `full`. Selective recomputation is the default and is recommended in almost all cases. This mode retains in memory the activations that take less memory storage space and are more expensive to recompute and recomputes the activations that take more memory storage space but are relatively inexpensive to recompute. See [our paper](https://arxiv.org/pdf/2205.05198) for details. You should find that this mode maximizes performance while minimizing the memory required to store activations. To enable selective activation recompute simply use `--recompute-activations`.
For cases where memory is very limited, `full` recompute saves just the inputs to a transformer layer, or a group, or block, of transformer layers, and recomputes everything else. To enable full activation recompute use `--recompute-granularity full`. When using `full` activation recompute, there are two methods: `uniform` and `block`, chosen using the `--recompute-method` argument.
* The `uniform` method uniformly divides the transformer layers into groups of layers (each group of size `--recompute-num-layers`) and stores the input activations of each group in memory. The baseline group size is 1 and, in this case, the input activation of each transformer layer is stored. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage, enabling a bigger model to be trained. For example, when `--recompute-num-layers` is set to 4, only the input activation of each group of 4 transformer layers is stored.
* The `block` method recomputes the input activations of a specific number (given by `--recompute-num-layers`) of individual transformer layers per pipeline stage and stores the input activations of the remaining layers in the pipeline stage. Reducing `--recompute-num-layers` results in storing the input activations to more transformer layers, which reduces the activation recomputation required in the backprop, thus improving training performance while increasing memory usage. For example, when we specify 5 layers to recompute of 8 layers per pipeline stage, the input activations of only the first 5 transformer layers are recomputed in the backprop step while the input activations for the final 3 layers are stored. `--recompute-num-layers` can be incrementally increased until the amount of memory storage space required is just small enough to fit in the available memory, thereby both maximally utilizing memory and maximizing performance.
## Distributed Optimizer
Usage: `--use-distributed-optimizer`. Compatible with all model and data types.
The distributed optimizer is a memory savings technique, whereby the optimizer state is evenly distributed across data parallel ranks (versus the traditional method of replicating the optimizer state across data parallel ranks). As described in [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054), our implementation distributes all optimizer state that does not overlap with the model state. For example, when using fp16 model params, the distributed optimizer maintains its own separate copy of fp32 main params & grads, which are distributed across DP ranks. When using bf16 model params, however, the distributed optimizer's fp32 main grads are the same as the model's fp32 grads, and so the grads in this case are not distributed (although the fp32 main params are still distributed, as they are separate from the bf16 model params).
Theoretical memory savings vary depending on the combination of the model's param dtype and grad dtype. In our implementation, the theoretical number of bytes per parameter is (where 'd' is the data parallel size):
| | Non-distributed optim | Distributed optim |
|-|-|-|
| fp16 param, fp16 grads | 20 | 4 + 16/d |
| bf16 param, fp32 grads | 18 | 6 + 12/d |
| fp32 param, fp32 grads | 16 | 8 + 8/d |
As with regular data parallelism, overlapping of the gradient reduction (in this case, a reduce-scatter) with the backward pass can be facilitated using the `--overlap-grad-reduce` flag. Additionally, overlapping of the parameter all-gather can be overlapped with the forward pass using `--overlap-param-gather`.
## FlashAttention
Usage: `--use-flash-attn`. Support attention head dimensions at most 128.
[FlashAttention](https://github.com/HazyResearch/flash-attention) is a fast and
memory-efficient algorithm to compute exact attention. It speeds up model
training and reduces memory requirement.
To install FlashAttention:
```sh
pip install flash-attn
```
## GPT-3 Example
In `examples/pretrain_gpt3_175B.sh` we have provided an example of how to configure Megatron to train [GPT-3](https://arxiv.org/abs/2005.14165) with 175 billion parameters on 1024 GPUs. The script is designed for [slurm](https://slurm.schedmd.com/documentation.html) with [pyxis](https://github.com/NVIDIA/pyxis) plugin but can be easily adopted to any other scheduler. It uses 8-way tensor parallelism and 16-way pipeline parallelism. With options `global-batch-size 1536` and `rampup-batch-size 16 16 5859375`, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incremental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.
With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.
## Retro and InstructRetro
Retro [(Borgeaud et al., 2022)](https://arxiv.org/abs/2112.04426) is an autoregressive decoder-only language model (LM) pretrained with retrieval-augmentation.
Retro features practical scalability to support large-scale pretraining from scratch by retrieving from trillions of tokens.
Pretraining with retrieval provides a more efficient storage mechanism of factual knowledge, when compared to storing factual knowledge implicitly within the network's parameters, thus largely reducing model parameters while achieving lower perplexity than standard GPT.
Retro also provides the flexibility to update the
knowledge stored in LMs [(Wang et al., 2023a)](https://arxiv.org/abs/2304.06762)
by updating the retrieval database without training LMs again.
InstructRetro [(Wang et al., 2023b)](https://arxiv.org/abs/2310.07713) further scales up the size of Retro to 48B, featuring the largest LLM pretrained with retrieval (as of December 2023).
The obtained foundation model, Retro 48B, largely outperforms the GPT counterpart in terms of perplexity.
With instruction tuning on Retro, InstructRetro demonstrates significant improvement over the instruction tuned GPT on downstream tasks in the zero-shot setting. Specifically, the average improvement of InstructRetro is 7% over its GPT counterpart across 8 short-form QA tasks, and 10% over GPT across 4 challenging long-form QA tasks. We also find that one can ablate the encoder from InstructRetro architecture and directly use the InstructRetro decoder backbone as GPT, while achieving comparable results.
In this repo, we provide an end-to-end reproduction guide to implement Retro and InstructRetro, covering
- **Retrieval database construction**, which supports billions or even trillions of tokens as a large-scale retrieval database.
- **Pretraining with retrieval**, which supports pretraining from scratch and pretraining from a pretrained GPT model (Retro-fitting).
- **Instruction tuning**, where we provide an open-source instruction tuning dataset and the training recipe for instruction tuning on Retro.
- **Downstream task evaluation**, where we provide the text generation and evaluation scripts for zero-shot question answering tasks.
Please see [tools/retro/README.md](tools/retro/README.md) for a detailed overview.
## Mamba-based Language Models
Please see [examples/mamba](./examples/mamba) for details.
<!--
## REALM Pipeline
We are working on implementing the [REALM](https://arxiv.org/pdf/2002.08909.pdf) system. The following sections (will) reflect the three stages of training it. For now it's just the ICT code.
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
### Inverse Cloze Task (ICT) Pretraining
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document.
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body.
Refer to the following script
<pre>
python preprocess_data.py \
--input /path/to/corpus.json \
--json-keys text title \
--split-sentences \
--tokenizer-type BertWordPieceLowerCase \
--vocab-file /path/to/vocab.txt \
--output-prefix corpus_indexed \
--workers 5 # works well for 10 CPU cores. Scale up accordingly.
</pre>
2. Use a custom samples mapping function in place of `megatron/legacy/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/core/datasets/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block.
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
4. Use `pretrain_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with.
The script below trains the ICT model from REALM. It references a pretrained BERT model (step 3) in the `--bert-load` argument. The batch size used in the paper is 4096, so this would need to be run with data parallel world size 32.
<pre>
python pretrain_ict.py \
--num-layers 12 \
--num-attention-heads 12 \
--hidden-size 768 \
--batch-size 128 \
--seq-length 256 \
--max-position-embeddings 256 \
--ict-head-size 128 \
--train-iters 100000 \
--bert-load /path/to/pretrained_bert \
--load checkpoints \
--save checkpoints \
--data-path /path/to/indexed_dataset \
--titles-data-path /path/to/titles_indexed_dataset \
--vocab-file /path/to/vocab.txt \
--lr 0.0001 \
--num-workers 2 \
--lr-decay-style linear \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--lr-warmup-fraction .01 \
--save-interval 3000 \
--query-in-block-prob 0.1 \
--fp16
</pre>
### Building an Index of Block Embeddings
After having trained an ICT model, you can now embed an entire dataset of blocks by creating a `BlockData` structure. After that has been saved, you can load it
and wrap it with a `FaissMIPSIndex` to do fast similarity search which is key in the learned information retrieval pipeline. The initial index can be built with the following script, meant to be run in an interactive session. It can leverage multiple GPUs on multiple nodes to index large datasets much more quickly.
<pre>
python tools/create_doc_index.py \
--num-layers 12 \
--hidden-size 768 \
--ict-head-size 128 \
--num-attention-heads 12 \
--batch-size 128 \
--seq-length 256 \
--max-position-embeddings 256 \
--ict-load /path/to/pretrained_ict \
--data-path /path/to/indexed_dataset \
--titles-data-path /path/to/titles_indexed_dataset \
--block-data-path embedded_blocks.pkl \
--indexer-log-interval 1000 \
--indexer-batch-size 128 \
--vocab-file /path/to/vocab.txt \
--num-workers 2 \
--fp16
</pre>
-->
# Evaluation and Tasks
We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.
Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on fewer GPUs in downstream tasks. The following script accomplishes this. This example reads in a GPT model with 4-way tensor and 4-way pipeline model parallelism and writes out a model with 2-way tensor and 2-way pipeline model parallelism.
<pre>
python tools/checkpoint/convert.py \
--model-type GPT \
--load-dir checkpoints/gpt3_tp4_pp4 \
--save-dir checkpoints/gpt3_tp2_pp2 \
--target-tensor-parallel-size 2 \
--target-pipeline-parallel-size 2
</pre>
Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
## GPT Text Generation
We have included a simple REST server to use for text generation in `tools/run_text_generation_server.py`. You run it much like you would start a pretraining job, specifying an appropriate pretrained checkpoint. There are also few optional parameters: `temperature`, `top-k`and `top-p`. See `--help` or the source file for more information. See [examples/run_text_generation_server_345M.sh](examples/run_text_generation_server_345M.sh) for an example of how to run the server.
Once the server is running you can use `tools/text_generation_cli.py` to query it, it takes one argument which is the host the server is running on.
<pre>
tools/text_generation_cli.py localhost:5000
</pre>
You can also use CURL or any other tools to query the server directly:
<pre>
curl 'http://localhost:5000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8' -d '{"prompts":["Hello world"], "tokens_to_generate":1}'
</pre>
See [megatron/inference/text_generation_server.py](megatron/inference/text_generation_server.py) for more API options.
### Detoxify GPT via Self-generation
We include an example in `examples/detxoify_lm/` to detoxify language models by leveraging the generative power of language models.
See [examples/detxoify_lm/README.md](examples/detxoify_lm/README.md) for step-by-step tutorials on how to perform domain-adaptive training and detoxify LM using self-generated corpus.
## GPT Evaluation
We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.
### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
<pre>
TASK="WIKITEXT103"
VALID_DATA=&#60;wikitext path&#62;.txt
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS="--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--fp16 \
--vocab-file $VOCAB_FILE"
python tasks/main.py \
--task $TASK \
$COMMON_TASK_ARGS \
--valid-data $VALID_DATA \
--tokenizer-type GPT2BPETokenizer \
--merge-file $MERGE_FILE \
--load $CHECKPOINT_PATH \
--micro-batch-size 8 \
--log-interval 10 \
--no-load-optim \
--no-load-rng
</pre>
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Ensure that `lambada` is part of the file path.
<pre>
TASK="LAMBADA"
VALID_DATA=&#60;lambada path&#62;.json
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
python tasks/main.py \
--task $TASK \
$COMMON_TASK_ARGS \
--valid-data $VALID_DATA \
--tokenizer-type GPT2BPETokenizer \
--strict-lambada \
--merge-file $MERGE_FILE \
--load $CHECKPOINT_PATH \
--micro-batch-size 8 \
--log-interval 10 \
--no-load-optim \
--no-load-rng
</pre>
Further command line arguments are described in the source file [`main.py`](./tasks/main.py)
## BERT Task Evaluation
### RACE Evaluation
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files. Note that for RACE, the batch size is the number of RACE query's to evaluate. Since each RACE query has four samples, the effective batch size passed through the model will be four times the batch size specified on the command line.
<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
COMMON_TASK_ARGS="--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 512 \
--max-position-embeddings 512 \
--fp16 \
--vocab-file $VOCAB_FILE"
COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
--valid-data $VALID_DATA \
--pretrained-checkpoint $PRETRAINED_CHECKPOINT \
--save-interval 10000 \
--save $CHECKPOINT_PATH \
--log-interval 100 \
--eval-interval 1000 \
--eval-iters 10 \
--weight-decay 1.0e-1"
python tasks/main.py \
--task RACE \
$COMMON_TASK_ARGS \
$COMMON_TASK_ARGS_EXT \
--tokenizer-type BertWordPieceLowerCase \
--epochs 3 \
--micro-batch-size 4 \
--lr 1.0e-5 \
--lr-warmup-fraction 0.06
</pre>
### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.
<pre>
TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
python tasks/main.py \
--task MNLI \
$COMMON_TASK_ARGS \
$COMMON_TASK_ARGS_EXT \
--tokenizer-type BertWordPieceLowerCase \
--epochs 5 \
--micro-batch-size 8 \
--lr 5.0e-5 \
--lr-warmup-fraction 0.065
</pre>
## Llama-2 Inference and Finetuning
The Llama-2 [family of models](https://ai.meta.com/llama/) are an open-source set of pretrained & finetuned (for chat) models that have achieved strong results across a wide set of benchmarks. At the time of release, Llama-2 models achieved among the best results for open-source models, and were competitive with the closed-source GPT-3.5 model (see https://arxiv.org/pdf/2307.09288.pdf).
The Llama-2 checkpoints can be loaded into Megatron for inference and finetuning. See documentation [here](docs/llama2.md).
# Model Optimization and Deployment
Megatron-Core (MCore) `GPTModel` family supports advanced quantization algorithms and high-performance inference through TensorRT-LLM.
## Quantization and TensorRT-LLM Deployment
See [Megatron Model Optimization and Deployment](examples/inference/README.md) for `llama2` and `nemotron3` examples.
# Datasets
We do not host any datasets for GPT or BERT training, however, we detail their collection so that our results may be reproduced.
## Collecting Wikipedia Training Data
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text."
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json object per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset with nltk punctuation standardization. For BERT training, use the `--split-sentences` flag to `preprocess_data.py` as described [above](#data-preprocessing) to include sentence breaks in the produced index. If you'd like to use Wikipedia data for GPT training you should still clean it with nltk/spacy/ftfy, but do not use the `--split-sentences` flag.
## Collecting GPT Webtext Data
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filter, clean, and deduplicate all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.
# Reproducibility
Megatron training can be bitwise reproducible; to enable this mode use `--deterministic-mode`. This means that the same training config run twice in the same HW and SW environment should produce identical model checkpoints, losses and accuracy metric values (iteration time metrics may vary).
There are currently three known Megatron optimizations that break reproducibility whilst still producing almost identical training runs:
1. The specific NCCL algorithm that is used during an all-reduce (as specified by the environment variable `NCCL_ALGO`) is important. We have tested the following: `^NVLS`, `Tree`, `Ring`, `CollnetDirect`, `CollnetChain`. The code admits the use of `^NVLS`, which allows NCCL the choice of non-NVLS algorithms; its choice seems to be stable.
2. Flash attention is non-deterministic; do not use `--use-flash-attn`.
3. If using Transformer Engine, you must also set the environment variable `NVTE_ALLOW_NONDETERMINISTIC_ALGO=0`.
In addition, determinisim has only been verified in NGC PyTorch containers up to and newer than 23.12. If you observe nondeterminism in Megatron training under other circumstances please open an issue.
## Projects Using Megatron
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
* [BioMegatron: Larger Biomedical Domain Language Model](https://www.aclweb.org/anthology/2020.emnlp-main.379.pdf)
* [End-to-End Training of Neural Retrievers for Open-Domain Question Answering](https://arxiv.org/abs/2101.00408)
* [Large Scale Multi-Actor Generative Dialog Modeling](https://www.aclweb.org/anthology/2020.acl-main.8.pdf)
* [Local Knowledge Powered Conversational Agents](https://arxiv.org/abs/2010.10150)
* [MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.226.pdf)
* [RACE Reading Comprehension Dataset Leaderboard](http://www.qizhexie.com/data/RACE_leaderboard.html)
* [Training Question Answering Models From Synthetic Data](https://www.aclweb.org/anthology/2020.emnlp-main.468.pdf)
* [Few-shot Instruction Prompts for Pretrained Language Models to Detect Social Biases](https://arxiv.org/abs/2112.07868)
* [Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models](https://arxiv.org/abs/2202.04173)
* [Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model](https://arxiv.org/abs/2201.11990)
* [Multi-Stage Prompting for Knowledgeable Dialogue Generation](https://arxiv.org/abs/2203.08745)
* [Evaluating Parameter Efficient Learning for Generation](https://aclanthology.org/2022.emnlp-main.319.pdf)
* [Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models](https://arxiv.org/abs/2202.04173)
* [Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study](https://arxiv.org/abs/2304.06762)
* [InstructRetro: Instruction Tuning post Retrieval-Augmented Pretraining](https://arxiv.org/abs/2310.07713)
* [An Empirical Study of Mamba-based Language Models](https://arxiv.org/abs/2406.07887)
This source diff could not be displayed because it is too large. You can view the blob instead.
mpirun --allow-run-as-root -H node11,node12,node13,node14,node15,node16,node17,node18 --map-by node -mca plm_rsh_args "-p 3344" $1
# Llama, Mistral and other Llama-like model support in Megatron-LM
NOTE: Llama-3 and Mistral support in Megatron is currently experimental and we are still evaluting benchmark results to confirm model conversion, training and inference correctness.
The [Llama-2](https://ai.meta.com/llama/) and [Llama-3](https://llama.meta.com/) family of models are an open-source set of pretrained & finetuned (for chat) models that have achieved strong results across a wide set of benchmarks. At their times of release, both Llama-2 and Llama-3 models achieved among the best results for open-source models, and were competitive with leading closed-source models (see https://arxiv.org/pdf/2307.09288.pdf and https://ai.meta.com/blog/meta-llama-3/).
Similarly, [Mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) is an open-source model with pretrained and finetuned (for chat) variants that achieve strong benchmark results.
Architecturally Llama-2, Llama-3 and Mistral-7b are very similar. As such Megatron can support loading checkpoints from all three for inference and finetuning. Converting the checkpoints and loading them is slightly different for each model and is detailed for each below.
# Llama-2
Llama-2 checkpoints can be loaded into Megatron for inference and for finetuning. Loading these checkpoints consists of three steps:
1. Get access to download the checkpoints.
2. Convert the checkpoints from Meta/Huggingface format to Megatron format.
3. Setup arguments for launching the model.
The following sections detail these steps. The final section lists benchmark result comparisons between: 1) Llama-2 inference code running the Meta-format checkpoints, and 2) Megatron inference code running the converted checkpoints.
## Contents
* [Download Meta or Huggingface checkpoints](#download-meta-or-huggingface-checkpoints)
* [Convert checkpoint format](#convert-checkpoint-format)
* [Meta format](#meta-format)
* [Huggingface format](#huggingface-format)
* [Launch model](#launch-model)
* [Megatron](#launch-megatron)
* [Meta](#launch-meta)
* [Huggingface](#launch-hf)
* [Benchmark results](#benchmark-results)
## Download Meta or Huggingface checkpoints
Users must first apply for access to download the Llama-2 checkpoints either directly from [Meta](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) or through [Huggingface](https://huggingface.co/docs/transformers/main/model_doc/llama2) (HF). The checkpoints are available in two formats, Meta's native format (available from both the Meta and HF links), and HF's format (available only from HF). Either format can be converted to Megatron, as detailed next.
## Convert checkpoint format
We recommend passing `--dtype bf16` for training or finetuning. Inference can be done in bfloat16 or float16.
### Meta format
The Meta format checkpoints are converted to HF format as an intermediate step before converting to Megatron format. The `transformers` package is required, and must have version >=4.31.0 (e.g., `pip install transformers>=4.31.0`). (**Note**: we have specifically tested with versions `4.31.0` and `4.32.0`; your experience may vary with newer versions.) Assuming the downloaded checkpoints are in `$CHECKPOINT_DIR` (with separate sub-directories for 7B, 13B, 70B, etc.), the following example command can be used to convert from Llama-2 format to HF format in bfloat16:
```
python tools/checkpoint/convert.py --model-type GPT \
> --loader llama_mistral \
> --saver megatron \
> --checkpoint-type meta \
> --model-size llama2-7B \
> --load-dir $LLAMA_META_FORMAT_DIR \
> --save-dir ${MEGATRON_FORMAT_DIR} \
> --tokenizer-model ${TOKENIZER_MODEL} \
> --target-tensor-parallel-size ${TP} \
> --target-pipeline-parallel-size ${PP} \
> --bf16
```
Valid values for `--model-size` are `llama2-7B`, `llama2-13B`, and `llama2-70B` (for pretrained-only models), and `llama2-7Bf`, `llama2-13Bf`, and `llama2-70Bf` (for chat-finetuned models).
### Huggingface format
The HF checkpoints can be converted to Megatron format by using Megatron's own Llama-2 checkpoint converter for HF format (see script `tools/checkpoint/loader_llama_mistral.py`). One important argument that must be set correctly is the tensor parallel size (`TP`) for each model. The following table shows these values:
| Model size | Tensor parallel size (`TP`) |
| ---------- | --------------------------- |
| 7B | 1 |
| 13B | 2 |
| 70B | 8 |
Using these values for `TP`, along with the path to the Llama-2 tokenizer model (automatically downloaded with original checkpoint download; see `${TOKENIZER_MODEL}` below), run the following command from the root of your Megatron source code to convert from HF format to Megatron format:
```
$>: python tools/checkpoint/convert.py \
> --model-type GPT \
> --loader llama_mistral \
> --saver megatron \
> --target-tensor-parallel-size ${TP} \
> --checkpoint-type hf
> --load-dir ${HF_FORMAT_DIR} \
> --save-dir ${MEGATRON_FORMAT_DIR} \
> --tokenizer-model ${TOKENIZER_MODEL}
```
After this conversion, we are ready to load the checkpoints into a Megatron GPT model.
## Launch model
### Launch Megatron
If loading for either inference or finetuning, use the following arguments:
```
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size 1 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--tokenizer-type Llama2Tokenizer \
--tokenizer-model ${TOKENIZER_MODEL} \
--load ${CHECKPOINT_DIR} \
--exit-on-missing-checkpoint \
--use-checkpoint-args \
--no-load-optim \
--no-load-rng \
--untie-embeddings-and-output-weights \
--use-rotary-position-embeddings \
--normalization RMSNorm \
--no-position-embedding \
--no-masked-softmax-fusion \
--attention-softmax-in-fp32
```
### Launch Meta
Meta checkpoints can be launched with: https://github.com/facebookresearch/llama
### Launch Huggingface
Huggingface checkpoints can be launched with: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
## Benchmark results
The tables below list the benchmark comparisons between native Llama-2 (using Meta's checkpoint and Meta's inference code) and Megatron (using a converted HF checkpoint and Megatron's inference code).
The values are the percent error between Megatron and Llama-2, calculated using the formula: `|<llama_score> - <megatron_score>| / <llama_score>`, where the type of score is detailed before each table. Across all tests (80 total per model size), the mean error is 0.15%. The small difference in benchmark scores between the two models is due to minor arithmetic differences in implementation that alter the numerics slightly. Some of the factors that influence this difference include:
- Megatron performs batch matrix multiplications in a couple places, such as within self attention and in SwiGLU, that Llama performs separately.
- Megatron uses `torch.baddbmm` within self attention, versus Llama using `torch.matmul`.
- Megatron uses a `sin`/`cos` implementation for rotary position embeddings, versus Llama using a `polar`/`complex` implementation.
- Llama calls `torch.set_default_dtype(torch.float16)` during initialization, which Megatron does not.
### Big Bench
Score type: multiple choice grade.
| bigbench / standard | 7b | 13b | 70b |
| -- | -- | -- | -- |
| date_understanding | 0.29% | 0.13% | 0.12% |
| general_knowledge | 0.00% | 0.00% | 0.00% |
| human_organs_senses | 0.00% | 0.00% | 0.00% |
| intent_recognition | 0.00% | 0.11% | 0.00% |
| riddle_sense | 0.00% | 0.00% | 0.00% |
| similarities_abstraction | 0.00% | 0.58% | 0.00% |
| simple_arithmetic_json_multiple_choice | 0.00% | 0.00% | 0.00% |
| undo_permutation | 0.19% | 0.19% | 0.18% |
### Multilingual
Score type: multiple choice grade.
| multilingual / xcopa | 7b | 13b | 70b |
| -- | -- | -- | -- |
| en-template-mGPT-remove-punctuation | 0.08% | 0.00% | 0.00% |
| et-template-mGPT-remove-punctuation | 0.00% | 0.13% | 0.25% |
| ht-template-mGPT-remove-punctuation | 0.26% | 0.13% | 0.26% |
| id-template-mGPT-remove-punctuation | 0.11% | 0.00% | 0.19% |
| it-template-mGPT-remove-punctuation | 0.00% | 0.10% | 0.09% |
| qu-template-mGPT-remove-punctuation | 0.00% | 0.00% | 0.27% |
| sw-template-mGPT-remove-punctuation | 0.14% | 0.13% | 0.13% |
| th-template-mGPT-remove-punctuation | 0.25% | 0.13% | 0.13% |
| tr-template-mGPT-remove-punctuation | 0.26% | 0.00% | 0.34% |
| vi-template-mGPT-remove-punctuation | 0.00% | 0.11% | 0.00% |
| zh-template-mGPT-remove-punctuation | 0.00% | 0.10% | 0.09% |
### LM Evaluation Harness
Score type: multiple choice grade.
| lm-eval | 7b | 13b | 70b |
| -- | -- | -- | -- |
| boolq | 0.04% | 0.04% | 0.07% |
| hellaswag | 0.02% | 0.03% | 0.03% |
| piqa | 0.00% | 0.00% | 0.07% |
| winogrande | 0.00% | 0.11% | 0.20% |
### MMLU
Score type: multiple choice grade.
Note: the number in brackets is the number of sub-tasks for each supercategory.
| mmlu | 7b | 13b | 70b |
| -- | -- | -- | -- |
| stem [18] | 0.79% | 0.05% | 0.01% |
| humanities [13] | 0.19% | 0.01% | 0.02% |
| other (business, health, misc.) [14] | 0.08% | 0.06% | 0.12% |
| social sciences [12] | 0.37% | 0.21% | 0.01% |
# Llama-3
Llama-3 checkpoints can be loaded into Megatron for inference and for finetuning. Loading these checkpoints consists of several steps:
1. Get access to download the checkpoints (weights and tokenizer).
2. Clone the llama3 loading code from Meta.
3. Install the llama package from source.
4. Convert the checkpoints from Meta/Huggingface format to Megatron format.
5. Setup arguments for launching the model.
The following sections detail these steps.
## Contents
* [Download Meta or Huggingface checkpoints](#download-meta-or-huggingface-checkpoints)
* [Install tiktoken](#install-tiktoken)
* [Install llama package from Meta](#install-llama-package)
* [Convert checkpoint format](#convert-checkpoint-format)
* [Meta format](#meta-format)
* [Huggingface format](#huggingface-format)
* [Launch model](#launch-model)
* [Megatron](#launch-megatron)
* [Meta](#launch-meta)
* [Huggingface](#launch-hf)
* [Benchmark results](#benchmark-results)
## Download Meta or Huggingface checkpoints
Users must first apply for access to download the Llama-3 checkpoints either directly from [Meta](https://llama.meta.com/llama-downloads) or through [Huggingface](https://huggingface.co/meta-llama) (HF). The checkpoints are available in two formats, Meta's native format (available from both the Meta and HF links), and HF's format (available only from HF). Either format can be converted to Megatron, as detailed next.
## Install tiktoken
The Llama-3 tokenizer relies on the availability of the `tiktoken` module which can be installed through `pip`.
## Install llama package from Meta
1. In a location outside of the megatron-lm source directory, e.g `~`: `git clone https://github.com/meta-llama/llama3.git`
2. `cd $LLAMA3_SOURCE_DIR`
4. `pip install -e .`
## Convert checkpoint format
We recommend passing `--dtype bf16` for training or finetuning. Inference can be done in bfloat16 or float16.
### Meta format
The Meta format checkpoints are converted to HF format as an intermediate step before converting to Megatron format. The `transformers` package is required, and must have version >=4.31.0 (e.g., `pip install transformers>=4.31.0`). (**Note**: we have specifically tested with versions `4.31.0` and `4.32.0`; your experience may vary with newer versions.) Assuming the downloaded checkpoints are in `$CHECKPOINT_DIR` (with separate sub-directories for 8B, 70B, etc.), the following example command can be used to convert from Llama-3 format to HF format in bfloat16:
```
python tools/checkpoint/convert.py \
> --model-type GPT \
> --loader llama_mistral \
> --saver mcore \
> --checkpoint-type meta \
> --model-size llama3-8B \
> --load-dir $LLAMA_META_FORMAT_DIR \
> --save-dir ${MEGATRON_FORMAT_DIR} \
> --tokenizer-model ${TOKENIZER_MODEL} \
> --target-tensor-parallel-size ${TP} \
> --target-pipeline-parallel-size ${PP} \
> --bf16
```
Valid values for `--model_size` are `llama3-8B` and `llama3-70B` (for pretrained-only models), and `llama3-8Bf` and `llama3-70Bf` (for chat-finetuned models).
### Huggingface format
The HF checkpoints can be converted to Megatron format by using Megatron's own Llama-3 checkpoint converter for HF format (see script `tools/checkpoint/loader_llama_mistral.py`). One important argument that must be set correctly is the tensor parallel size (`TP`) for each model. The following table shows these values:
| Model size | Tensor parallel size (`TP`) |
| ---------- | --------------------------- |
| 8B | 1 |
| 70B | 8 |
Using these values for `TP`, along with the path to the Llama-3 tokenizer model (automatically downloaded with original checkpoint download; see `${TOKENIZER_MODEL}` below), run the following command from the root of your Megatron source code to convert from HF format to Megatron format:
```
$>: python tools/checkpoint/convert.py \
> --model-type GPT \
> --loader llama_mistral \
> --saver mcore \
> --target-tensor-parallel-size ${TP} \
> --checkpoint-type hf
> --load-dir ${HF_FORMAT_DIR} \
> --save-dir ${MEGATRON_FORMAT_DIR} \
> --tokenizer-model ${TOKENIZER_MODEL}
> --model-size llama3-8B \
```
Valid values for `--model-size` are `llama3-8B` and `llama3-70B` (for pretrained-only models), and `llama3-8Bf` and `llama3-70Bf` (for chat-finetuned models).
After this conversion, we are ready to load the checkpoints into a Megatron GPT model.
## Launch model
### Launch Megatron
If loading for either inference or finetuning, use the following arguments:
```
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size 1 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--tokenizer-type Llama3Tokenizer \
--tokenizer-model ${TOKENIZER_MODEL} \
--load ${CHECKPOINT_DIR} \
--exit-on-missing-checkpoint \
--use-checkpoint-args \
--no-load-optim \
--no-load-rng \
--untie-embeddings-and-output-weights \
--normalization RMSNorm \
--position-embedding-type rope \
--no-masked-softmax-fusion \
--attention-softmax-in-fp32
```
### Launch Meta
Meta checkpoints can be launched with: https://github.com/meta-llama/llama3
### Launch Huggingface
Huggingface checkpoints can be launched by following the instructions here: https://huggingface.co/blog/llama3
## Benchmark results
Llama-3 support in Megatron is currently experimental and we are still carrying out benchmark evaluations.
# Mistral-7b
Megatron currently supports loading the v.03 release of Mistral-7b (which does not use sliding window attention and offers a larger 32768 vocabulary) for inference and finetuning. Loading these checkpoints consists of several steps:
1. Get access to download the checkpoints (weights and tokenizer).
2. Install the `mistral-common` package
3. Convert the checkpoints from HuggingFace format to Megatron format.
4. Setup arguments for launching the model.
The following sections detail these steps.
## Contents
* [Download Huggingface checkpoints](#download-huggingface-checkpoints)
* [Install mistral-common packgage](#install-mistral-common)
* [Convert checkpoint format](#convert-checkpoint-format)
* [Launch model](#launch-model)
* [Benchmark results](#benchmark-results)
## Download Huggingface checkpoints
Users must first apply for access to download the Mistral-7b checkpoints through [Huggingface](https://huggingface.co/mistralai/Mistral-7B-v0.3) (HF). Megatron does not currently support the v0.1 or v0.2 checkpoints, ensure you download v0.3. Megatron also does not currently support using the raw weights directly from [Mistral](https://docs.mistral.ai/getting-started/open_weight_models/).
## Install the mistral-common package
`pip install mistral-common`
## Convert checkpoint format
The HF checkpoints can be converted to Megatron format by using Megatron's own Mistral checkpoint converter for HF format (see script `tools/checkpoint/loader_llama_mistral.py`).
Using the path to the Mistral tokenizer model (downloaded alongside the HF checkpoint), run the following command from the root of your Megatron source code to convert from HF format to mcore format:
```
$>: python tools/checkpoint/convert.py \
> --model-type GPT \
> --loader llama_mistral \
> --saver mcore \
> --target-tensor-parallel-size ${TP} \
> --checkpoint-type hf \
> --load-dir ${HF_FORMAT_DIR} \
> --save-dir ${MEGATRON_FORMAT_DIR} \
> --tokenizer-model ${TOKENIZER_MODEL} \
> --model-size mistral-7B \
```
Valid values for `--model-size` are mistral-7B for the pretrained model or mistral-7Bf for the chat fine-tuned model.
After this conversion, we are ready to load the checkpoints into an mcore GPT model.
## Launch model
If loading for either inference or finetuning, use the following arguments:
```
--tensor-model-parallel-size ${TP} \
--pipeline-model-parallel-size 1 \
--seq-length 4096 \
--max-position-embeddings 4096 \
--tokenizer-type MistralTokenizer \
--tokenizer-model ${TOKENIZER_MODEL} \
--load ${CHECKPOINT_DIR} \
--exit-on-missing-checkpoint \
--use-checkpoint-args \
--no-load-optim \
--no-load-rng \
--untie-embeddings-and-output-weights \
--normalization RMSNorm \
--position-embedding-type rope \
--no-masked-softmax-fusion \
--attention-softmax-in-fp32
```
## Benchmark results
Mistral-7B support in Megatron is currently experimental and we are still carrying out benchmark evaluations.
# Other Llama-like model support
*Note: Experimental*
Many models such as Yi-34B use the Llama architecture and may be converted from HuggingFace to Megatron using the commands in [Llama3](#llama-3).
context\_parallel package
=========================
Context parallelism overview
----------------------------
.. figure:: ../images/context_parallel/CP_overview.png
:alt: cp_overview
:align: center
Figure 1: A transformer layer running with TP2CP2. Communications next to Attention are for CP, others are for TP. (AG/RS: all-gather in forward and reduce-scatter in backward, RS/AG: reduce-scatter in forward and all-gather in backward, /AG: no-op in forward and all-gather in backward).
Context Parallelism ("CP") is a parallelization scheme on the dimension of sequence length. Unlike prior SP (sequence parallelism) which only splits the sequence of Dropout and LayerNorm activations, CP partitions the network inputs and all activations along sequence dimension. With CP, all modules except attention (e.g., Linear, LayerNorm, etc.) can work as usual without any changes, because they do not have inter-token operations. As for attention, the Q (query) of each token needs to compute with the KV (key and value) of all tokens in the same sequence. Hence, CP requires additional all-gather across GPUs to collect the full sequence of KV. Correspondingly, reduce-scatter should be applied to the activation gradients of KV in backward propagation. To reduce activation memory footprint, each GPU only stores the KV of a sequence chunk in forward and gathers KV again in backward. KV communication happens between a GPU and its counterparts in other TP groups. The all-gather and reduce-scatter are transformed to point-to-point communications in ring topology under the hood. Exchanging KV also can leverage MQA/GQA to reduce communication volumes, as they only have one or few attention heads for KV.
For example, in Figure 1, assuming sequence length is 8K, each GPU processes 4K tokens. GPU0 and GPU2 compose a CP group, they exchange KV with each other. Same thing also happens between GPU1 and GPU3. CP is similar to `Ring Attention <https://arxiv.org/abs/2310.01889>`_ but provides better performance by (1) leveraging the latest OSS and cuDNN flash attention kernels; (2) removing unnecessary computation resulted from low-triangle causal masking and achieving optimal load balance among GPUs.
Context parallelism benefits
----------------------------
.. figure:: ../images/context_parallel/CP_results.png
:alt: cp_results
:align: center
Figure 2: Speedup of 175B GPT with various TP+CP combinations vs. full recompute (i.e., TP8CP1).
LLM encounters OOM (out of memory) issue with long context (i.e., long sequence length) because of linearly increasing memory footprint of activations. Recomputing activations in backward can avoid OOM but also introduce significant overheads (~30% with full recompute). Enlarging TP (tensor model parallelism) can fix the OOM issue as well, but it potentially makes compute (e.g., Linear) too short to overlap communication latencies. To be clear, scaling out to more GPUs with bigger TP can hit the overlapping problem no matter if OOM happens.
CP can better address the issues. With CP, each GPU only computes on a part of the sequence, which reduces both computation and communication by CP times. Therefore, there are no concerns about the overlapping between them. The activation memory footprint per GPU is also CP times smaller, hence no OOM issue any more. As Figure 2 shows, the combinations of TP and CP can achieve optimal performance by eliminating recompute overheads and making the best tradeoff between computation and communications.
Enabling context parallelism
----------------------------
CP support has been added to GPT. All models that share GPT code path also should be able to benefit from CP, such as Llama. CP can work with TP (tensor model parallelism), PP (pipeline model parallelism), and DP (data parallelism), where the total number of GPUs equals TPxCPxPPxDP. CP also can work with different attention variants, including MHA/MQA/GQA, uni-directional and bi-directional masking.
CP is enabled by simply setting context_parallel_size=<CP_SIZE> in command line. Default context_parallel_size is 1, which means CP is disabled. Running with CP requires Megatron-Core (>=0.5.0) and Transformer Engine (>=1.1).
datasets package
================
.. mdinclude :: ../../../megatron/core/datasets/readme.md
Submodules
----------
datasets.blended\_megatron\_dataset\_config module
---------------------------------------------------
.. automodule:: core.datasets.blended_megatron_dataset_config
:members:
:undoc-members:
:show-inheritance:
datasets.blended\_megatron\_dataset\_builder module
---------------------------------------------------
.. automodule:: core.datasets.blended_megatron_dataset_builder
:members:
:undoc-members:
:show-inheritance:
datasets.megatron\_tokenizer module
-----------------------------------
.. automodule:: core.datasets.megatron_tokenizer
:members:
:undoc-members:
:show-inheritance:
datasets.indexed\_dataset module
--------------------------------
.. automodule:: core.datasets.indexed_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.megatron\_dataset module
---------------------------------
.. automodule:: core.datasets.megatron_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.gpt\_dataset module
----------------------------
.. automodule:: core.datasets.gpt_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.masked\_dataset module
-------------------------------
.. automodule:: core.datasets.masked_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.bert\_dataset module
-----------------------------
.. automodule:: core.datasets.bert_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.t5\_dataset module
---------------------------
.. automodule:: core.datasets.t5_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.blended\_dataset module
----------------------------------
.. automodule:: core.datasets.blended_dataset
:members:
:undoc-members:
:show-inheritance:
datasets.utils module
---------------------
.. automodule:: core.datasets.utils
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.datasets
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing package
===========================
A library for saving and loading the distributed checkpoints.
A "distributed checkpoint" can have various underlying formats (current default format is based on Zarr)
but has a distinctive property - the checkpoint saved in one parallel configuration (tensor/pipeline/data parallelism)
can be loaded in a different parallel configuration.
Using the library requires defining sharded state_dict dictionaries with functions from *mapping* and *optimizer* modules.
Those state dicts can be saved or loaded with a *serialization* module using strategies from *strategies* module.
Subpackages
-----------
.. toctree::
:maxdepth: 4
dist_checkpointing.strategies
Submodules
----------
dist\_checkpointing.serialization module
----------------------------------------
.. automodule:: core.dist_checkpointing.serialization
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.mapping module
----------------------------------
.. automodule:: core.dist_checkpointing.mapping
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.optimizer module
------------------------------------
.. automodule:: core.dist_checkpointing.optimizer
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.core module
-------------------------------
.. automodule:: core.dist_checkpointing.core
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.dict\_utils module
--------------------------------------
.. automodule:: core.dist_checkpointing.dict_utils
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.utils module
--------------------------------
.. automodule:: core.dist_checkpointing.utils
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.dist_checkpointing
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.strategies package
======================================
Package defining different checkpoint formats (backends) and saving/loading algorithms (strategies).
Strategies can be used for implementing new checkpoint formats or implementing new (more optimal for a given use case) ways of saving/loading of existing formats.
Strategies are passed to `dist_checkpointing.load` and `dist_checkpointing.save` functions and control the actual saving/loading procedure.
Submodules
----------
dist\_checkpointing.strategies.base module
------------------------------------------
.. automodule:: core.dist_checkpointing.strategies.base
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.strategies.tensorstore module
-------------------------------------------------
.. automodule:: core.dist_checkpointing.strategies.tensorstore
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.strategies.two\_stage module
------------------------------------------------
.. automodule:: core.dist_checkpointing.strategies.two_stage
:members:
:undoc-members:
:show-inheritance:
dist\_checkpointing.strategies.zarr module
------------------------------------------
.. automodule:: core.dist_checkpointing.strategies.zarr
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.dist_checkpointing.strategies
:members:
:undoc-members:
:show-inheritance:
distributed package
===================
This package contains various utilities to finalize model weight gradients
on each rank before the optimizer step. This includes a distributed data
parallelism wrapper to all-reduce or reduce-scatter the gradients across
data-parallel replicas, and a `finalize\_model\_grads` method to
synchronize gradients across different parallelism modes (e.g., 'tied'
layers on different pipeline stages, or gradients for experts in a MoE on
different ranks due to expert parallelism).
Submodules
----------
distributed.distributed\_data\_parallel
---------------------------------------
Model wrapper for distributed data parallelism. Stores gradients in a
contiguous buffer, and supports the option of overlapping communication
(all-reduce or reduce-scatter) with backprop computation by breaking up
full model's gradients into smaller buckets and running all-reduce /
reduce-scatter on each bucket asynchronously.
.. automodule:: core.distributed.distributed_data_parallel
:members:
:undoc-members:
:show-inheritance:
distributed.finalize\_model\_grads
----------------------------------
Finalize model gradients for optimizer step across all used parallelism modes.
Synchronizes the all-reduce / reduce-scatter of model gradients across DP replicas,
all-reduces the layernorm gradients for sequence parallelism, embedding gradients
across first and last pipeline stages (if not tied), and expert gradients for expert
parallelism.
.. automodule:: core.distributed.finalize_model_grads
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
Contains functionality to synchronize gradients across different ranks before
optimizer step.
.. automodule:: core.distributed
:members:
:undoc-members:
:show-inheritance:
fusions package
===============
This package provides modules that provide commonly fused
operations. Fusing operations improves compute efficiency by
increasing the amount of work done each time a tensor is read from
memory. To perform the fusion, modules in this either rely on PyTorch
functionality for doing just-in-time compilation
(i.e. `torch.jit.script` in older PyTorch versions of `torch.compile`
in recent versions), or call into custom kernels in external libraries
such as Apex or TransformerEngine.
Submodules
----------
fusions.fused\_bias\_dropout module
-----------------------------------
This module uses PyTorch JIT to fuse the bias add and dropout operations. Since dropout is not used during inference, different functions are used when in train mode and when in inference mode.
.. automodule:: core.fusions.fused_bias_dropout
:members:
:undoc-members:
:show-inheritance:
fusions.fused\_bias\_gelu module
--------------------------------
This module uses PyTorch JIT to fuse the bias add and GeLU nonlinearity operations.
.. automodule:: core.fusions.fused_bias_gelu
:members:
:undoc-members:
:show-inheritance:
fusions.fused\_layer\_norm module
---------------------------------
This module provides a wrapper around various fused LayerNorm implementation in Apex.
.. automodule:: core.fusions.fused_layer_norm
:members:
:undoc-members:
:show-inheritance:
fusions.fused\_softmax module
-----------------------------
This module provides wrappers around variations of Softmax in Apex.
.. automodule:: core.fusions.fused_softmax
:members:
:undoc-members:
:show-inheritance:
fusions.fused\_cross\_entropy\_loss module
------------------------------------------
This module uses PyTorch JIT to fuse the cross entropy loss calculation and batches communication calls.
.. automodule:: core.fusions.fused_softmax
:members:
:undoc-members:
:show-inheritance:
API Guide
=========
.. toctree::
:maxdepth: 4
models
tensor_parallel
context_parallel
pipeline_parallel
fusions
transformer
moe
dist_checkpointing
distributed
datasets
models.bert package
===================
Useful package for training bert and bert like encoder only models. It optionally comes with a binary head that can be used for classification tasks .
Submodules
----------
models.bert.bert\_model module
------------------------------
.. automodule:: core.models.bert.bert_model
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.models.bert
:members:
:undoc-members:
:show-inheritance:
models.gpt package
==================
This is the implementation of the popular GPT model. It supports several features like model parallelization (Tensor Parallel, Pipeline Parallel, Data Parallel) , mixture of experts, FP8 , Distributed optimizer etc. We are constantly adding new features. So be on the lookout or raise an issue if you want to have something added.
Submodules
----------
models.gpt.gpt\_model module
----------------------------
.. automodule:: core.models.gpt.gpt_model
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.models.gpt
:members:
:undoc-members:
:show-inheritance:
models package
==============
This package contains most of the popular LLMs . Currently we have support for GPT, Bert, T5 and Retro . This is an ever growing list so keep an eye out.
Subpackages
-----------
.. toctree::
:maxdepth: 4
models.gpt
models.t5
models.bert
Module contents
---------------
.. automodule:: core.models
:members:
:undoc-members:
:show-inheritance:
models.t5 package
=================
Submodules
----------
models.t5.t5\_model module
--------------------------
.. automodule:: core.models.T5.t5_model
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.models.T5
:members:
:undoc-members:
:show-inheritance:
Mixture of Experts package
==========================
.. mdinclude :: ../../../megatron/core/transformer/moe/README.md
pipeline\_parallel package
==========================
This package contains implementations for two different pipeline parallelism
schedules (one without interleaving and one with interleaving, see `Efficient
Large-Scale Language Model Training on GPU Clusters Using Megatron-LM <https://arxiv.org/abs/2104.04473>`_
for details), and a default no-pipelining schedule. It also contains methods
for the point-to-point communication that is needed between pipeline stages.
Submodules
----------
pipeline\_parallel.p2p\_communication module
--------------------------------------------
Contains implementations for the various point-to-point communication needed
(e.g., `recv_forward` and `recv_backward`) in the different pipeline parallelism
schedules.
.. automodule:: core.pipeline_parallel.p2p_communication
:members:
:undoc-members:
:show-inheritance:
pipeline\_parallel.schedules module
-----------------------------------
Contains implementations for two pipeline parallelism schedules
(`forward_backward_pipelining_with_interleaving`for pipeline parallelism with
interleaving, `forward_backward_pipelining_without_interleaving` for pipeline
parallelism without interleaving) and a default no-pipelining schedule
(`forward_backward_no_pipelining`). `get_forward_backward_func` returns the right
scheduling function to use based on the configuration being trained
(e.g., if pipeline-parallel size is 1, use `forward_backward_no_pipelining`).
.. automodule:: core.pipeline_parallel.schedules
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.pipeline_parallel
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel package
========================
This package contains an implementation for tensor parallelism in transformer
models (see `Megatron-LM: Training Multi-Billion Parameter Language Models
Using Model Parallelism <https://arxiv.org/abs/1909.08053>`_ and `Reducing
Activation Recomputation in Large Transformer Models <https://arxiv.org/abs/2205.05198>`_
for details).
Submodules
----------
tensor\_parallel.cross\_entropy module
--------------------------------------
.. automodule:: core.tensor_parallel.cross_entropy
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel.data module
----------------------------
.. automodule:: core.tensor_parallel.data
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel.layers module
------------------------------
.. automodule:: core.tensor_parallel.layers
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel.mappings module
--------------------------------
.. automodule:: core.tensor_parallel.mappings
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel.random module
------------------------------
.. automodule:: core.tensor_parallel.random
:members:
:undoc-members:
:show-inheritance:
tensor\_parallel.utils module
-----------------------------
.. automodule:: core.tensor_parallel.utils
:members:
:undoc-members:
:show-inheritance:
Module contents
---------------
.. automodule:: core.tensor_parallel
:members:
:undoc-members:
:show-inheritance:
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment