llama3_8b.sh 3 KB
Newer Older
wangsen's avatar
all  
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/bin/bash
source /opt/dtk/env.sh
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB


export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=16
export NCCL_MIN_P2P_NCHANNELS=16
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1

#export NCCL_IB_HCA=mlx5_1,mlx5_2
export NCCL_NET_GDR_LEVEL=SYS
export NCCL_NET_GDR_READ=0

lrank=$OMPI_COMM_WORLD_LOCAL_RANK
RANK=$OMPI_COMM_WORLD_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE

CHECKPOINT_PATH=./tmp_8b #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp_8b  #$2 #<Specify path>
DATA_PATH="./dataset/alpaca_text_document" #<Specify path and file prefix>_text_document

GPT_MODEL_ARGS=(
    --num-layers 32 
    --hidden-size 4096
    --num-attention-heads 32
    --ffn-hidden-size 14336
    --seq-length 8192 
    --max-position-embeddings 8192
    --num-query-groups 8
    --group-query-attention
)

TRAINING_ARGS=(
    --log-throughput
    --transformer-impl local
    --use-legacy-models 
    --micro-batch-size 1
    --global-batch-size 128
    --train-iters 120
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
    --use-flash-attn-triton
    --optimizer adam
    --use-distributed-optimizer
    --ddp-average-in-collective
    --overlap-grad-reduce
    --disable-bias-linear
    --recompute-activations
    --attention-dropout 0
    --hidden-dropout 0
    --no-gradient-accumulation-fusion
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
)

MODEL_PARALLEL_ARGS=(
        --sequence-parallel
	--tensor-model-parallel-size 1
	--pipeline-model-parallel-size 4
)
#--sequence-parallel
DATA_ARGS=(
    --data-path $DATA_PATH 
    --split 949,50,1
    --untie-embeddings-and-output-weights
    --use-rotary-position-embeddings 
    --normalization RMSNorm 
    --no-position-embedding 
    --tokenizer-type HuggingFaceTokenizer
)

EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --log-throughput
    --save-interval 10000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH 
    --load $CHECKPOINT_PATH 
    --eval-iters 1000
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)

APP="python3  -u pretrain_gpt.py \
     ${GPT_MODEL_ARGS[@]} \
     ${TRAINING_ARGS[@]} \
     ${MODEL_PARALLEL_ARGS[@]} \
     ${DATA_ARGS[@]} \
     ${EVAL_AND_LOGGING_ARGS[@]}
     --rank ${RANK} \
     --world_size ${WORLD_SIZE} \
     --dist_url tcp://${1}:34566 \
    "


case ${lrank} in
[0])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[1])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[2])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[3])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[4])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[5])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[6])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
[7])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  ${APP}
  ;;
esac