task_sequence_labeling_ner_mrc.py 8.7 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#! -*- coding:utf-8 -*-
# mrc阅读理解方案
# 数据集:http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
# [valid_f1]: 95.75

import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from bert4torch.snippets import sequence_padding, Callback, ListDataset, seed_everything
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from tqdm import tqdm
from collections import defaultdict

max_c_len = 224
max_q_len = 32
batch_size = 6  # 真实的batch_size是 batch_size * 实体类型数
categories = ['LOC', 'PER', 'ORG']
ent2query = {"LOC": "找出下述句子中的地址名",
             "PER": "找出下述句子中的人名",
             "ORG": "找出下述句子中的机构名"}

# BERT base
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 固定seed
seed_everything(42)

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        D = []
        with open(filename, encoding='utf-8') as f:
            f = f.read()
            for l in f.split('\n\n'):
                if not l:
                    continue
                d = ['']
                for i, c in enumerate(l.split('\n')):
                    char, flag = c.split(' ')
                    d[0] += char
                    if flag[0] == 'B':
                        d.append([i, i, flag[2:]])
                    elif flag[0] == 'I':
                        d[-1][1] = i
                D.append(d)
        return D


# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

def collate_fn(batch):
    batch_token_ids, batch_segment_ids, batch_start_labels, batch_end_labels = [], [], [], []
    batch_ent_type = []
    for d in batch:
        tokens_b = tokenizer.tokenize(d[0], maxlen=max_c_len)[1:]  # 不保留[CLS]
        mapping = tokenizer.rematch(d[0], tokens_b)
        start_mapping = {j[0]: i for i, j in enumerate(mapping) if j}
        end_mapping = {j[-1]: i for i, j in enumerate(mapping) if j}

        # 按照实体类型整理实体
        label_dict = defaultdict(list)
        for start, end, label in d[1:]:
            if start in start_mapping and end in end_mapping:
                start = start_mapping[start]
                end = end_mapping[end]
                label_dict[label].append((start, end))

        # 遍历实体类型,query为tokens_a, context为tokens_b
        # 样本组成:[CLS] + tokens_a + [SEP] + tokens_b + [SEP]
        for _type in categories:
            start_ids = [0] * len(tokens_b)
            end_ids = [0] * len(tokens_b)

            text_a = ent2query[_type]
            tokens_a = tokenizer.tokenize(text_a, maxlen=max_q_len)

            for _label in label_dict[_type]:
                start_ids[_label[0]] = 1
                end_ids[_label[1]] = 1

            start_ids = [0] * len(tokens_a) + start_ids
            end_ids = [0] * len(tokens_a) + end_ids
            token_ids = tokenizer.tokens_to_ids(tokens_a) + tokenizer.tokens_to_ids(tokens_b)
            segment_ids = [0] * len(tokens_a) + [1] * len(tokens_b)
            assert len(start_ids) == len(end_ids) == len(token_ids) == len(segment_ids)

            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
            batch_start_labels.append(start_ids)
            batch_end_labels.append(end_ids)
            batch_ent_type.append(_type)

    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    batch_start_labels = torch.tensor(sequence_padding(batch_start_labels), dtype=torch.long, device=device)
    batch_end_labels = torch.tensor(sequence_padding(batch_end_labels), dtype=torch.long, device=device)
    return [batch_token_ids, batch_segment_ids], [batch_segment_ids, batch_start_labels, batch_end_labels, batch_ent_type]

# 转换数据集
train_dataloader = DataLoader(MyDataset('F:/Projects/data/corpus/ner/china-people-daily-ner-corpus/example.train'), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataloader = DataLoader(MyDataset('F:/Projects/data/corpus/ner/china-people-daily-ner-corpus/example.dev'), batch_size=batch_size, collate_fn=collate_fn) 

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self):
        super().__init__()
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path)
        self.mid_linear = nn.Sequential(
            nn.Linear(768, 128),
            nn.ReLU(),
            nn.Dropout(0.1)
        )
        self.start_fc = nn.Linear(128, 2)
        self.end_fc = nn.Linear(128, 2)

    def forward(self, token_ids, segment_ids):
        sequence_output = self.bert([token_ids, segment_ids])  # [bts, seq_len, hdsz]
        seq_out = self.mid_linear(sequence_output)  # [bts, seq_len, mid_dims]
        start_logits = self.start_fc(seq_out)  # [bts, seq_len, 2]
        end_logits = self.end_fc(seq_out)  # [bts, seq_len, 2]

        return start_logits, end_logits


model = Model().to(device)

class Loss(nn.CrossEntropyLoss):
    def forward(self, outputs, labels):
        start_logits, end_logits = outputs
        mask, start_ids, end_ids = labels[:3]
        start_logits = start_logits.view(-1, 2)
        end_logits = end_logits.view(-1, 2)

        # 去掉 text_a 和 padding 部分的标签,计算真实 loss
        active_loss = mask.view(-1) == 1
        active_start_logits = start_logits[active_loss]
        active_end_logits = end_logits[active_loss]
        active_start_labels = start_ids.view(-1)[active_loss]
        active_end_labels = end_ids.view(-1)[active_loss]

        start_loss = super().forward(active_start_logits, active_start_labels)
        end_loss = super().forward(active_end_logits, active_end_labels)
        return start_loss + end_loss

model.compile(loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5))


def evaluate(data):
    X, Y, Z = 0, 1e-10, 1e-10
    for (token_ids, segment_ids), labels in tqdm(data, desc='Evaluation'):
        start_logit, end_logit = model.predict([token_ids, segment_ids])  # [btz, seq_len, 2]
        mask, start_ids, end_ids, ent_type = labels

        # entity粒度
        entity_pred = mrc_decode(start_logit, end_logit, ent_type, mask)
        entity_true = mrc_decode(start_ids, end_ids, ent_type)

        X += len(entity_pred.intersection(entity_true))
        Y += len(entity_pred)
        Z += len(entity_true)
    f1, precision, recall = 2 * X / (Y + Z), X/ Y, X / Z
    return f1, precision, recall


# 严格解码 baseline
def mrc_decode(start_preds, end_preds, ent_type, mask=None):
    '''返回实体的start, end
    '''
    predict_entities = set()
    if mask is not None: # 预测的把query和padding部分mask掉
        start_preds = torch.argmax(start_preds, -1) * mask
        end_preds = torch.argmax(end_preds, -1) * mask

    start_preds = start_preds.cpu().numpy()
    end_preds = end_preds.cpu().numpy()

    for bt_i in range(start_preds.shape[0]):
        start_pred = start_preds[bt_i]
        end_pred = end_preds[bt_i]
        # 统计每个样本的结果
        for i, s_type in enumerate(start_pred):
            if s_type == 0:
                continue
            for j, e_type in enumerate(end_pred[i:]):
                if s_type == e_type:
                    # [样本id, 实体起点,实体终点,实体类型]
                    predict_entities.add((bt_i, i, i+j, ent_type[bt_i]))
                    break
    return predict_entities


class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        f1, precision, recall = evaluate(valid_dataloader)
        if f1 > self.best_val_f1:
            self.best_val_f1 = f1
            # model.save_weights('best_model.pt')
        print(f'[val] f1: {f1:.5f}, p: {precision:.5f} r: {recall:.5f} best_f1: {self.best_val_f1:.5f}')


if __name__ == '__main__':

    evaluator = Evaluator()

    model.fit(train_dataloader, epochs=20, steps_per_epoch=None, callbacks=[evaluator])

else: 

    model.load_weights('best_model.pt')