task_sentence_embedding_unsup_SimCSE.py 7.56 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#! -*- coding: utf-8 -*-
# SimCSE 中文测试
# bert4keras链接:https://kexue.fm/archives/8348
# |     solution    |   ATEC  |  BQ  |  LCQMC  |  PAWSX  |  STS-B  |
# |      SimCSE     |  33.90  | 50.29|  71.81  |  13.14  |  71.09  |

from bert4torch.snippets import sequence_padding
from tqdm import tqdm
import numpy as np
import scipy.stats
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.tokenizers import Tokenizer
from bert4torch.snippets import sequence_padding, Callback, get_pool_emb
from torch.utils.data import DataLoader
from torch import optim, nn
import torch
from bert4torch.snippets import ListDataset
import sys
import jieba
jieba.initialize()


# =============================基本参数=============================
model_type, pooling, task_name, dropout_rate = sys.argv[1:]  # 传入参数
# model_type, pooling, task_name, dropout_rate = 'BERT', 'cls', 'ATEC', 0.3  # debug使用
print(model_type, pooling, task_name, dropout_rate)

assert model_type in {'BERT', 'RoBERTa', 'NEZHA', 'RoFormer', 'SimBERT'}
assert pooling in {'first-last-avg', 'last-avg', 'cls', 'pooler'}
assert task_name in {'ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B'}
if model_type in {'BERT', 'RoBERTa', 'SimBERT'}:
    model_name = 'bert'
elif model_type in {'RoFormer'}:
    model_name = 'roformer'
elif model_type in {'NEZHA'}:
    model_name = 'nezha'

dropout_rate = float(dropout_rate)
batch_size = 32

if task_name == 'PAWSX':
    maxlen = 128
else:
    maxlen = 64

# bert配置
model_dir = {
    'BERT': 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12',
    'RoBERTa': 'F:/Projects/pretrain_ckpt/robert/[hit_torch_base]--chinese-roberta-wwm-ext-base',
    'NEZHA': 'F:/Projects/pretrain_ckpt/nezha/[huawei_noah_torch_base]--nezha-cn-base',
    'RoFormer': 'F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v1_base',
    'SimBERT': 'F:/Projects/pretrain_ckpt/simbert/[sushen_torch_base]--simbert_chinese_base',
}[model_type]

config_path = f'{model_dir}/bert_config.json' if model_type == 'BERT' else f'{model_dir}/config.json'
checkpoint_path = f'{model_dir}/pytorch_model.bin'
dict_path = f'{model_dir}/vocab.txt'
data_path = 'F:/Projects/data/corpus/sentence_embedding/'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# =============================加载数据集=============================
# 建立分词器
if model_type in ['RoFormer']:
    tokenizer = Tokenizer(dict_path, do_lower_case=True, pre_tokenize=lambda s: jieba.lcut(s, HMM=False))
else:
    tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 读数据
all_names = [f'{data_path}{task_name}/{task_name}.{f}.data' for f in ['train', 'valid', 'test']]
print(all_names)

def load_data(filenames):
    """加载数据(带标签)
    单条格式:(文本1, 文本2, 标签)
    """
    D = []
    for filename in filenames:
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = l.strip().split('\t')
                if len(l) == 3:
                    D.append((l[0], l[1], float(l[2])))
    return D

all_texts = load_data(all_names)
train_texts = [j for i in all_texts for j in i[:2]]

if task_name != 'PAWSX':
    np.random.shuffle(train_texts)
    train_texts = train_texts[:10000]

# 加载训练数据集
def collate_fn(batch):
    texts_list = [[] for _ in range(2)]
    for text in batch:
        token_ids = tokenizer.encode(text, maxlen=maxlen)[0]
        texts_list[0].append(token_ids)
        texts_list[1].append(token_ids)
    for i, texts in enumerate(texts_list):
        texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device)
    labels = torch.arange(texts_list[0].size(0), device=texts_list[0].device)
    return texts_list, labels
train_dataloader = DataLoader(ListDataset(data=train_texts), shuffle=True, batch_size=batch_size, collate_fn=collate_fn)

# 加载测试数据集
def collate_fn_eval(batch):
    texts_list = [[] for _ in range(2)]
    labels = []
    for text1, text2, label in batch:
        texts_list[0].append(tokenizer.encode(text1, maxlen=maxlen)[0])
        texts_list[1].append(tokenizer.encode(text2, maxlen=maxlen)[0])
        labels.append(label)
    for i, texts in enumerate(texts_list):
        texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device)
    labels = torch.tensor(labels, dtype=torch.float, device=device)
    return texts_list, labels
valid_dataloader = DataLoader(ListDataset(data=all_texts), batch_size=batch_size, collate_fn=collate_fn_eval)

# 建立模型
class Model(BaseModel):
    def __init__(self, pool_method='cls', scale=20.0):
        super().__init__()
        self.pool_method = pool_method
        with_pool = 'linear' if pool_method == 'pooler' else True
        output_all_encoded_layers = True if pool_method == 'first-last-avg' else False
        self.bert = build_transformer_model(config_path, checkpoint_path, model=model_name, segment_vocab_size=0, dropout_rate=dropout_rate,
                                            with_pool=with_pool, output_all_encoded_layers=output_all_encoded_layers)
        self.scale = scale
    
    def forward(self, token_ids_list):
        reps = []
        for token_ids in token_ids_list:
            hidden_state1, pooler = self.bert([token_ids])
            rep = get_pool_emb(hidden_state1, pooler, token_ids.gt(0).long(), self.pool_method)
            reps.append(rep)
        embeddings_a = reps[0]
        embeddings_b = torch.cat(reps[1:])
        scores = self.cos_sim(embeddings_a, embeddings_b) * self.scale  # [btz, btz]
        return scores
    
    def encode(self, token_ids):
        self.eval()
        with torch.no_grad():
            hidden_state, pooler = self.bert([token_ids])
            output = get_pool_emb(hidden_state, pooler, token_ids.gt(0).long(), self.pool_method)
        return output

    @staticmethod
    def cos_sim(a, b):
        a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
        b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
        return torch.mm(a_norm, b_norm.transpose(0, 1))

model = Model(pool_method=pooling).to(device)
model.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam(model.parameters(), 1e-5))

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_consine = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_consine = evaluate(valid_dataloader)
        if val_consine > self.best_val_consine:
            self.best_val_consine = val_consine
            # model.save_weights('best_model.pt')
        print(f'val_consine: {val_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n')

def evaluate(dataloader):
    # 模型预测
    # 标准化,相似度,相关系数
    sims_list, labels = [], []
    for (a_token_ids, b_token_ids), label in tqdm(dataloader):
        a_vecs = model.encode(a_token_ids)
        b_vecs = model.encode(b_token_ids)
        a_vecs = torch.nn.functional.normalize(a_vecs, p=2, dim=1).cpu().numpy()
        b_vecs = torch.nn.functional.normalize(b_vecs, p=2, dim=1).cpu().numpy()
        sims = (a_vecs * b_vecs).sum(axis=1)
        sims_list.append(sims)
        labels.append(label.cpu().numpy())

    corrcoef = scipy.stats.spearmanr(np.concatenate(labels), np.concatenate(sims_list)).correlation
    return corrcoef

if  __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, steps_per_epoch=None, epochs=5, callbacks=[evaluator])