task_sentence_embedding_unsup_CT.py 8.41 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#! -*- coding:utf-8 -*-
# 语义相似度任务-无监督
# ContrastiveTensionLoss: 同一个sentence送入两个模型,pooling后的点积要大
# |     solution    |   ATEC  |  BQ  |  LCQMC  |  PAWSX  |  STS-B  |
# |        CT       |  30.65  | 44.50|  68.67  |  16.20  |  69.27  |

from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset, get_pool_emb
import torch.nn as nn
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics.pairwise import paired_cosine_distances
from scipy.stats import pearsonr, spearmanr
import copy
import random
from tqdm import tqdm
import numpy as np
import sys
import jieba
jieba.initialize()


# =============================基本参数=============================
model_type, pooling, task_name, dropout_rate = sys.argv[1:]  # 传入参数
# model_type, pooling, task_name, dropout_rate = 'BERT', 'cls', 'ATEC', 0.1  # debug使用
print(model_type, pooling, task_name, dropout_rate)

# 选用NEZHA和RoFormer选哟修改build_transformer_model的model参数
assert model_type in {'BERT', 'RoBERTa', 'NEZHA', 'RoFormer', 'SimBERT'}
assert pooling in {'first-last-avg', 'last-avg', 'cls', 'pooler'}
assert task_name in {'ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B'}
if model_type in {'BERT', 'RoBERTa', 'SimBERT'}:
    model_name = 'bert'
elif model_type in {'RoFormer'}:
    model_name = 'roformer'
elif model_type in {'NEZHA'}:
    model_name = 'nezha'

dropout_rate = float(dropout_rate)
batch_size = 32

if task_name == 'PAWSX':
    maxlen = 128
else:
    maxlen = 64

# bert配置
model_dir = {
    'BERT': 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12',
    'RoBERTa': 'F:/Projects/pretrain_ckpt/robert/[hit_torch_base]--chinese-roberta-wwm-ext-base',
    'NEZHA': 'F:/Projects/pretrain_ckpt/nezha/[huawei_noah_torch_base]--nezha-cn-base',
    'RoFormer': 'F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v1_base',
    'SimBERT': 'F:/Projects/pretrain_ckpt/simbert/[sushen_torch_base]--simbert_chinese_base',
}[model_type]

config_path = f'{model_dir}/bert_config.json' if model_type == 'BERT' else f'{model_dir}/config.json'
checkpoint_path = f'{model_dir}/pytorch_model.bin'
dict_path = f'{model_dir}/vocab.txt'
data_path = 'F:/Projects/data/corpus/sentence_embedding/'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# =============================加载数据集=============================
# 建立分词器
if model_type in ['RoFormer']:
    tokenizer = Tokenizer(dict_path, do_lower_case=True, pre_tokenize=lambda s: jieba.lcut(s, HMM=False))
else:
    tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 读数据
all_names = [f'{data_path}{task_name}/{task_name}.{f}.data' for f in ['train', 'valid', 'test']]
print(all_names)

def load_data(filenames):
    """加载数据(带标签)
    单条格式:(文本1, 文本2, 标签)
    """
    D = []
    for filename in filenames:
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = l.strip().split('\t')
                if len(l) == 3:
                    D.append((l[0], l[1], float(l[2])))
    return D

all_texts = load_data(all_names)
train_texts = [j for i in all_texts for j in i[:2]]

if task_name != 'PAWSX':
    np.random.shuffle(train_texts)
    train_texts = train_texts[:10000]

# 加载训练数据集
def collate_fn(batch):
    texts_list = [[] for _ in range(2)]
    labels = []
    pos_id = random.randint(0, len(batch)-1)
    pos_token_ids, _ = tokenizer.encode(batch[pos_id], maxlen=maxlen)
    texts_list[0].append(pos_token_ids)
    texts_list[1].append(pos_token_ids)
    labels.append(1)
    for neg_id in range(len(batch)):
        if neg_id == pos_id:
            continue
        elif random.random() < 0.5:
            neg_token_ids, _ = tokenizer.encode(batch[neg_id], maxlen=maxlen)
            texts_list[0].append(pos_token_ids)
            texts_list[1].append(neg_token_ids)
            labels.append(0)
        else:
            neg_token_ids, _ = tokenizer.encode(batch[neg_id], maxlen=maxlen)
            texts_list[0].append(neg_token_ids)
            texts_list[1].append(pos_token_ids)
            labels.append(0)
    for i, texts in enumerate(texts_list):
        texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device)
    labels = torch.tensor(labels, dtype=torch.float, device=device)
    return texts_list, labels
train_dataloader = DataLoader(ListDataset(data=train_texts), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 

# 加载测试数据集
def collate_fn_eval(batch):
    texts_list = [[] for _ in range(2)]
    labels = []
    for text1, text2, label in batch:
        texts_list[0].append(tokenizer.encode(text1, maxlen=maxlen)[0])
        texts_list[1].append(tokenizer.encode(text2, maxlen=maxlen)[0])
        labels.append(label)
    for i, texts in enumerate(texts_list):
        texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device)
    labels = torch.tensor(labels, dtype=torch.float, device=device)
    return texts_list, labels
valid_dataloader = DataLoader(ListDataset(data=all_texts), batch_size=batch_size, collate_fn=collate_fn_eval)

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self, pool_method='cls'):
        super().__init__()
        with_pool = 'linear' if pool_method == 'pooler' else True
        output_all_encoded_layers = True if pool_method == 'first-last-avg' else False
        self.model1 = build_transformer_model(config_path, checkpoint_path, model=model_name, segment_vocab_size=0, dropout_rate=dropout_rate,
                                            with_pool=with_pool, output_all_encoded_layers=output_all_encoded_layers)
        self.model2 = copy.deepcopy(self.model1)
        self.pool_method = pool_method

    def forward(self, token_ids_list):
        token_ids1 = token_ids_list[0]
        hidden_state1, pool_cls1 = self.model1([token_ids1])
        embeddings_a = get_pool_emb(hidden_state1, pool_cls1, token_ids1.gt(0).long(), self.pool_method)

        token_ids2 = token_ids_list[1]
        hidden_state2, pool_cls2 = self.model2([token_ids2])
        embeddings_b = get_pool_emb(hidden_state2, pool_cls2, token_ids2.gt(0).long(), self.pool_method)

        return torch.matmul(embeddings_a[:, None], embeddings_b[:, :, None]).squeeze(-1).squeeze(-1)  # [btz]

    def encode(self, token_ids):
        self.eval()
        with torch.no_grad():
            hidden_state, pool_cls = self.model1([token_ids])
            output = get_pool_emb(hidden_state, pool_cls, token_ids.gt(0).long(), self.pool_method)
        return output
    
model = Model(pool_method=pooling).to(device)

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=nn.BCEWithLogitsLoss(reduction='mean'),
    optimizer=optim.Adam(model.parameters(), lr=2e-5),  # 用足够小的学习率
)

# 定义评价函数
def evaluate(data):
    cosine_scores, labels = [], []
    for (batch_token1_ids, batch_token2_ids), label in tqdm(data):
        embeddings1 = model.encode(batch_token1_ids).cpu().numpy()
        embeddings2 = model.encode(batch_token2_ids).cpu().numpy()
        cosine_score = 1 - (paired_cosine_distances(embeddings1, embeddings2))
        cosine_scores.append(cosine_score)
        labels.append(label)

    cosine_scores = np.concatenate(cosine_scores)
    labels = torch.cat(labels).cpu().numpy()
    eval_pearson_cosine, _ = spearmanr(labels, cosine_scores)
    return eval_pearson_cosine


class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_consine = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_consine = evaluate(valid_dataloader)
        if val_consine > self.best_val_consine:
            self.best_val_consine = val_consine
            # model.save_weights('best_model.pt')
        print(f'val_consine: {val_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n')


if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, 
            epochs=5, 
            steps_per_epoch=None, 
            callbacks=[evaluator]
            )
else:
    model.load_weights('best_model.pt')