task_sentence_embedding_sup_InfoNCE.py 9.04 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#! -*- coding:utf-8 -*-
# loss: InfoNCE(即sentence_transformer中的MultiNegativeRankingLoss)
# 样本都是正负样本对,因此构造(正,正,负)的三元组时候,正样本对(正,正1)随机抽样负样本为(正,正1,负)
# 负样本对(正,负)重复正样本对(正,正,负)

from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset, get_pool_emb, seed_everything
import torch.nn as nn
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics.pairwise import paired_cosine_distances
from scipy.stats import spearmanr
import random
from tqdm import tqdm
import sys

# =============================基本参数=============================
# pooling, task_name = sys.argv[1:]  # 传入参数
pooling, task_name = 'cls', 'ATEC'  # debug使用
print('pooling: ', pooling, ' task_name: ', task_name)
assert task_name in ['ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B']
assert pooling in {'first-last-avg', 'last-avg', 'cls', 'pooler'}

maxlen = 64 if task_name != 'PAWSX' else 128
batch_size = 32
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
seed_everything(42)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# ===========================数据预处理===========================
# 训练
def collate_fn(batch):
    texts_list = [[] for _ in range(3)]
    for texts in batch:
        for i, text in enumerate(texts):
            token_ids, _ = tokenizer.encode(text, maxlen=maxlen)
            texts_list[i].append(token_ids)

    for i, texts in enumerate(texts_list):
        texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device)
    labels = torch.arange(texts_list[0].size(0), device=texts_list[0].device)
    return texts_list, labels

# 加载数据集
def get_data(filename):
    train_data, all_texts = {}, []
    with open(filename, encoding='utf-8') as f:
        for l in f:
            l = l.strip().split('\t')
            if len(l) != 3:
                continue
            text1, text2, label = l
            label = str(int(int(label) > 2.5)) if task_name == 'STS-B' else label
            if text1 not in train_data:
                train_data[text1] = {'0': set(), '1': set()}
            train_data[text1][label].add(text2)
            if text2 not in train_data:
                train_data[text2] = {'0': set(), '1': set()}
            train_data[text2][label].add(text1)
            all_texts.extend([text1, text2])

    train_samples = []
    for sent1, others in train_data.items():
        if len(others['1']) == 0:
            others['1'] = [sent1]  # 没有正样本,使用自身作为正阳本,这里其实就是无监督
        elif len(others['0']) == 0:
            others['0'] = [random.choice(all_texts)]  # 没有负样本,随机挑选一个负样本

        # sentence bert的逻辑是下面两个都加进去,这样的问题是如果shuffle=False,处于同一个batch中,相似句可能label给的负样本
        if random.random() < 0.5:
            train_samples.append((sent1, random.choice(list(others['1'])), random.choice(list(others['0']))))
        else:
            train_samples.append((random.choice(list(others['1'])), sent1, random.choice(list(others['0']))))
    return train_samples

train_data = get_data(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.train.data')
train_dataloader = DataLoader(ListDataset(data=train_data), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 

class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:(文本1, 文本2, 标签id)
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = l.strip().split('\t')
                if len(l) == 3:
                    D.append((l[0], l[1], int(l[2])))
        return D

def collate_fn_eval(batch):
    batch_token1_ids, batch_token2_ids, batch_labels = [], [], []
    for text1, text2, label in batch:
        token1_ids, _ = tokenizer.encode(text1, maxlen=maxlen)
        batch_token1_ids.append(token1_ids)
        token2_ids, _ = tokenizer.encode(text2, maxlen=maxlen)
        batch_token2_ids.append(token2_ids)
        batch_labels.append([label])

    batch_token1_ids = torch.tensor(sequence_padding(batch_token1_ids), dtype=torch.long, device=device)
    batch_token2_ids = torch.tensor(sequence_padding(batch_token2_ids), dtype=torch.long, device=device)

    batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device)
    return (batch_token1_ids, batch_token2_ids), batch_labels.flatten()

# 加载数据集
valid_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.valid.data'), batch_size=batch_size, collate_fn=collate_fn_eval)
test_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.test.data'), batch_size=batch_size, collate_fn=collate_fn_eval)

# 建立模型
class Model(BaseModel):
    def __init__(self, pool_method='cls', scale=20.0):
        super().__init__()
        self.pool_method = pool_method
        with_pool = 'linear' if pool_method == 'pooler' else True
        output_all_encoded_layers = True if pool_method == 'first-last-avg' else False
        self.bert = build_transformer_model(config_path, checkpoint_path, segment_vocab_size=0, 
                                            with_pool=with_pool, output_all_encoded_layers=output_all_encoded_layers)
        self.scale = scale
    
    def forward(self, token_ids_list):
        reps = []
        for token_ids in token_ids_list:
            hidden_state1, pooler = self.bert([token_ids])
            rep = get_pool_emb(hidden_state1, pooler, token_ids.gt(0).long(), self.pool_method)
            reps.append(rep)
        embeddings_a = reps[0]
        embeddings_b = torch.cat(reps[1:])
        scores = self.cos_sim(embeddings_a, embeddings_b) * self.scale  # [btz, btz]
        return scores
    
    def predict(self, token_ids):
        self.eval()
        with torch.no_grad():
            hidden_state, pooler = self.bert([token_ids])
            output = get_pool_emb(hidden_state, pooler, token_ids.gt(0).long(), self.pool_method)
        return output

    @staticmethod
    def cos_sim(a, b):
        a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
        b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
        return torch.mm(a_norm, b_norm.transpose(0, 1))


model = Model().to(device)

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=nn.CrossEntropyLoss(),
    optimizer=optim.Adam(model.parameters(), lr=2e-5),
)

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_consine = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_consine = self.evaluate(valid_dataloader)
        test_consine = self.evaluate(test_dataloader)

        if val_consine > self.best_val_consine:
            self.best_val_consine = val_consine
            # model.save_weights('best_model.pt')
        print(f'valid_consine: {val_consine:.5f}, test_consine: {test_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n')
        
        # 重新生成dataloader,重新random选择样本
        train_data = get_data(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.train.data')
        model.train_dataloader = DataLoader(ListDataset(data=train_data), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 

    # 定义评价函数
    def evaluate(self, data):
        embeddings1, embeddings2, labels = [], [], []
        for (batch_token_ids1, batch_token_ids2), batch_labels in tqdm(data, desc='Evaluate'):
            embeddings1.append(model.predict(batch_token_ids1))
            embeddings2.append(model.predict(batch_token_ids2))
            labels.append(batch_labels)
        embeddings1 = torch.cat(embeddings1).cpu().numpy()
        embeddings2 = torch.cat(embeddings2).cpu().numpy()
        labels = torch.cat(labels).cpu().numpy()
        cosine_scores = 1 - (paired_cosine_distances(embeddings1, embeddings2))  # cosine距离是1-paired
        eval_pearson_cosine, _ = spearmanr(labels, cosine_scores)
        return eval_pearson_cosine

if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, 
            epochs=10, 
            steps_per_epoch=None, 
            callbacks=[evaluator]
            )
else:
    model.load_weights('best_model.pt')