task_sentence_embedding_sup_ContrastiveLoss.py 6.1 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#! -*- coding:utf-8 -*-
# loss: ContrastiveLoss

from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset, get_pool_emb, seed_everything
from bert4torch.losses import ContrastiveLoss
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics.pairwise import paired_cosine_distances
from scipy.stats import spearmanr
from tqdm import tqdm
import sys

# =============================基本参数=============================
# pooling, task_name = sys.argv[1:]  # 传入参数
pooling, task_name = 'cls', 'ATEC'  # debug使用
print('pooling: ', pooling, ' task_name: ', task_name)
assert task_name in ['ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B']
assert pooling in {'first-last-avg', 'last-avg', 'cls', 'pooler'}


maxlen = 64 if task_name != 'PAWSX' else 128
batch_size = 32
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
seed_everything(42)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:(文本1, 文本2, 标签id)
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = l.strip().split('\t')
                if len(l) == 3:
                    D.append((l[0], l[1], int(l[2])))
        return D

def collate_fn(batch):
    batch_token1_ids, batch_token2_ids, batch_labels = [], [], []
    for text1, text2, label in batch:
        token1_ids, _ = tokenizer.encode(text1, maxlen=maxlen)
        batch_token1_ids.append(token1_ids)
        token2_ids, _ = tokenizer.encode(text2, maxlen=maxlen)
        batch_token2_ids.append(token2_ids)
        batch_labels.append([int(label>2.5) if task_name == 'STS-B' else label])

    batch_token1_ids = torch.tensor(sequence_padding(batch_token1_ids), dtype=torch.long, device=device)
    batch_token2_ids = torch.tensor(sequence_padding(batch_token2_ids), dtype=torch.long, device=device)

    batch_labels = torch.tensor(batch_labels, dtype=torch.float, device=device)
    return (batch_token1_ids, batch_token2_ids), batch_labels.flatten()

# 加载数据集
train_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.train.data'), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.valid.data'), batch_size=batch_size, collate_fn=collate_fn)
test_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.test.data'), batch_size=batch_size, collate_fn=collate_fn)

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self, pool_method='cls'):
        super().__init__()
        self.pool_method = pool_method
        with_pool = 'linear' if pool_method == 'pooler' else True
        output_all_encoded_layers = True if pool_method == 'first-last-avg' else False
        self.bert = build_transformer_model(config_path, checkpoint_path, segment_vocab_size=0,
                                            with_pool=with_pool, output_all_encoded_layers=output_all_encoded_layers)

    def forward(self, token1_ids, token2_ids):
        hidden_state1, pool_cls1 = self.bert([token1_ids])
        pool_emb1 = get_pool_emb(hidden_state1, pool_cls1, token1_ids.gt(0).long(), self.pool_method)
        
        hidden_state2, pool_cls2 = self.bert([token2_ids])
        pool_emb2 = get_pool_emb(hidden_state2, pool_cls2, token2_ids.gt(0).long(), self.pool_method)

        distance = 1- torch.cosine_similarity(pool_emb1, pool_emb2)
        return distance
    
    def predict(self, token_ids):
        self.eval()
        with torch.no_grad():
            hidden_state, pooler = self.bert([token_ids])
            attention_mask = token_ids.gt(0).long()
            output = get_pool_emb(hidden_state, pooler, attention_mask, self.pool_method)
        return output

model = Model().to(device)

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=ContrastiveLoss(),
    optimizer=optim.Adam(model.parameters(), lr=2e-5),
)

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_consine = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_consine = self.evaluate(valid_dataloader)
        test_consine = self.evaluate(test_dataloader)

        if val_consine > self.best_val_consine:
            self.best_val_consine = val_consine
            # model.save_weights('best_model.pt')
        print(f'valid_consine: {val_consine:.5f}, test_consine: {test_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n')

    # 定义评价函数
    def evaluate(self, data):
        embeddings1, embeddings2, labels = [], [], []
        for (batch_token1_ids, batch_token2_ids), batch_labels in tqdm(data, desc='Evaluate'):
            embeddings1.append(model.predict(batch_token1_ids).cpu())
            embeddings2.append(model.predict(batch_token2_ids).cpu())
            labels.append(batch_labels)
        embeddings1 = torch.cat(embeddings1).numpy()
        embeddings2 = torch.cat(embeddings2).numpy()
        labels = torch.cat(labels).cpu().numpy()
        cosine_scores = 1 - (paired_cosine_distances(embeddings1, embeddings2))
        eval_pearson_cosine, _ = spearmanr(labels, cosine_scores)
        return eval_pearson_cosine


if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, epochs=5, steps_per_epoch=None, callbacks=[evaluator])
else:
    model.load_weights('best_model.pt')