"docs/backend/server_arguments.md" did not exist on "282681b8a15affd7f7d9e16584c38954ba4e8413"
task_sentence_embedding_sup_CoSENT.py 6.41 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#! -*- coding:utf-8 -*-
# 原项目:https://kexue.fm/archives/8847

from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset, get_pool_emb, seed_everything
import torch.nn as nn
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics.pairwise import paired_cosine_distances
from scipy.stats import spearmanr
from tqdm import tqdm
import sys

# =============================基本参数=============================
# pooling, task_name = sys.argv[1:]  # 传入参数
pooling, task_name = 'cls', 'ATEC'  # debug使用
print('pooling: ', pooling, ' task_name: ', task_name)
assert task_name in ['ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B']
assert pooling in {'first-last-avg', 'last-avg', 'cls', 'pooler'}

maxlen = 64 if task_name != 'PAWSX' else 128
batch_size = 32
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
seed_everything(42)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:(文本1, 文本2, 标签id)
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = l.strip().split('\t')
                if len(l) == 3:
                    D.append((l[0], l[1], int(l[2])))
        return D

def collate_fn(batch):
    batch_token_ids, batch_labels = [], []
    for text1, text2, label in batch:
        for text in [text1, text2]:
            token_ids, _ = tokenizer.encode(text, maxlen=maxlen)
            batch_token_ids.append(token_ids)
            batch_labels.append([label])

    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_labels = torch.tensor(batch_labels, dtype=torch.float, device=device)
    return batch_token_ids, batch_labels.flatten()

# 加载数据集
train_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.train.data'), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.valid.data'), batch_size=batch_size, collate_fn=collate_fn)
test_dataloader = DataLoader(MyDataset(f'F:/Projects/data/corpus/sentence_embedding/{task_name}/{task_name}.test.data'), batch_size=batch_size, collate_fn=collate_fn)

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self, pool_method='cls'):
        super().__init__()
        self.pool_method = pool_method
        with_pool = 'linear' if pool_method == 'pooler' else True
        output_all_encoded_layers = True if pool_method == 'first-last-avg' else False
        self.bert = build_transformer_model(config_path, checkpoint_path, segment_vocab_size=0,
                                            with_pool=with_pool, output_all_encoded_layers=output_all_encoded_layers)

    def forward(self, token_ids):
        hidden_state, pooler = self.bert([token_ids])
        sem_emb = get_pool_emb(hidden_state, pooler, token_ids.gt(0).long(), self.pool_method)
        return sem_emb

model = Model().to(device)

class MyLoss(nn.Module):
    def forward(self, y_pred, y_true):
        # 1. 取出真实的标签
        y_true = y_true[::2]    # tensor([1, 0, 1]) 真实的标签

        # 2. 对输出的句子向量进行l2归一化   后面只需要对应为相乘  就可以得到cos值了
        norms = (y_pred ** 2).sum(axis=1, keepdims=True) ** 0.5
        # y_pred = y_pred / torch.clip(norms, 1e-8, torch.inf)
        y_pred = y_pred / norms

        # 3. 奇偶向量相乘
        y_pred = torch.sum(y_pred[::2] * y_pred[1::2], dim=1) * 20

        # 4. 取出负例-正例的差值
        y_pred = y_pred[:, None] - y_pred[None, :]  # 这里是算出所有位置 两两之间余弦的差值
        # 矩阵中的第i行j列  表示的是第i个余弦值-第j个余弦值
        y_true = y_true[:, None] < y_true[None, :]   # 取出负例-正例的差值
        y_true = y_true.float()
        y_pred = y_pred - (1 - y_true) * 1e12
        y_pred = y_pred.view(-1)
        y_pred = torch.cat((torch.tensor([0.0], device=device), y_pred), dim=0)  # 这里加0是因为e^0 = 1相当于在log中加了1
        return torch.logsumexp(y_pred, dim=0)

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=MyLoss(),
    optimizer=optim.Adam(model.parameters(), lr=2e-5),
)

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_consine = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_consine = self.evaluate(valid_dataloader)
        test_consine = self.evaluate(test_dataloader)

        if val_consine > self.best_val_consine:
            self.best_val_consine = val_consine
            # model.save_weights('best_model.pt')
        print(f'valid_consine: {val_consine:.5f}, test_consine: {test_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n')

    # 定义评价函数
    def evaluate(self, data):
        embeddings1, embeddings2, labels = [], [], []
        for batch_token_ids, batch_labels in tqdm(data, desc='Evaluate'):
            embeddings = model.predict(batch_token_ids)
            embeddings1.append(embeddings[::2])
            embeddings2.append(embeddings[1::2])
            labels.append(batch_labels[::2])
        embeddings1 = torch.cat(embeddings1).cpu().numpy()
        embeddings2 = torch.cat(embeddings2).cpu().numpy()
        labels = torch.cat(labels).cpu().numpy()
        cosine_scores = 1 - (paired_cosine_distances(embeddings1, embeddings2))
        eval_pearson_cosine, _ = spearmanr(labels, cosine_scores)
        return eval_pearson_cosine

if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, epochs=5, steps_per_epoch=None, callbacks=[evaluator])
else:
    model.load_weights('best_model.pt')