task_sentiment_classification_P_tuning.py 7.8 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#! -*- coding:utf-8 -*-
# 情感分析例子,利用MLM+P-tuning,目前示例是全部一起finetune未冻结
# 官方项目:https://github.com/THUDM/P-tuning
# 参考项目:https://github.com/bojone/P-tuning
# few-shot: 0.8953/0.8953

import torch
import torch.nn as nn
import numpy as np
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from torch.optim import Adam
from bert4torch.snippets import sequence_padding, ListDataset, Callback
from torch.utils.data import DataLoader
from torchinfo import summary

maxlen = 256
batch_size = 16
config_path = 'F:/Projects/pretrain_ckpt/robert/[hit_torch_base]--chinese-roberta-wwm-ext-base/config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/robert/[hit_torch_base]--chinese-roberta-wwm-ext-base/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/robert/[hit_torch_base]--chinese-roberta-wwm-ext-base/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
choice = 'finetune_all'  # finetune_all finetune_few

def load_data(filename):
    D = []
    with open(filename, encoding='utf-8') as f:
        for l in f:
            text, label = l.strip().split('\t')
            D.append((text, int(label)))
    return D

# 加载数据集
train_data = load_data('F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.train.data')
valid_data = load_data('F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.valid.data')
test_data = load_data('F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.test.data')

# 模拟标注和非标注数据
train_frac = 0.01  # 标注数据的比例
num_labeled = int(len(train_data) * train_frac)
unlabeled_data = [(t, 2) for t, l in train_data[num_labeled:]]
train_data = train_data[:num_labeled]
# train_data = train_data + unlabeled_data

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 对应的任务描述
mask_idx = 5
desc = ['[unused%s]' % i for i in range(1, 9)]
desc.insert(mask_idx - 1, '[MASK]')
desc_ids = [tokenizer.token_to_id(t) for t in desc]
pos_id = tokenizer.token_to_id(u'很')
neg_id = tokenizer.token_to_id(u'不')


def random_masking(token_ids):
    """对输入进行随机mask
    """
    rands = np.random.random(len(token_ids))
    source, target = [], []
    for r, t in zip(rands, token_ids):
        if r < 0.15 * 0.8:
            source.append(tokenizer._token_mask_id)
            target.append(t)
        elif r < 0.15 * 0.9:
            source.append(t)
            target.append(t)
        elif r < 0.15:
            source.append(np.random.choice(tokenizer._vocab_size - 1) + 1)
            target.append(t)
        else:
            source.append(t)
            target.append(0)
    return source, target


class MyDataset(ListDataset):
    def collate_fn(self, batch):
        batch_token_ids, batch_segment_ids, batch_output_ids = [], [], []
        for text, label in batch:
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            if label != 2:
                token_ids = token_ids[:1] + desc_ids + token_ids[1:]
                segment_ids = [0] * len(desc_ids) + segment_ids
            if self.kwargs['random']:
                source_ids, target_ids = random_masking(token_ids)
            else:
                source_ids, target_ids = token_ids[:], token_ids[:]
            if label == 0:
                source_ids[mask_idx] = tokenizer._token_mask_id
                target_ids[mask_idx] = neg_id
            elif label == 1:
                source_ids[mask_idx] = tokenizer._token_mask_id
                target_ids[mask_idx] = pos_id
            batch_token_ids.append(source_ids)
            batch_segment_ids.append(segment_ids)
            batch_output_ids.append(target_ids)
        batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
        batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
        batch_output_ids = torch.tensor(sequence_padding(batch_output_ids), dtype=torch.long, device=device)
        return [batch_token_ids, batch_segment_ids], batch_output_ids

# 加载数据集
train_dataset = MyDataset(data=train_data, random=True)
valid_dataset = MyDataset(data=valid_data, random=False)
test_dataset = MyDataset(data=test_data, random=False)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=train_dataset.collate_fn)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=valid_dataset.collate_fn) 
test_dataloader = DataLoader(test_dataset,  batch_size=batch_size, collate_fn=test_dataset.collate_fn) 

class MyLoss(nn.CrossEntropyLoss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    def forward(self, y_preds, y_true):
        y_pred = y_preds[1]
        y_pred = y_pred.reshape(-1, y_pred.shape[-1])
        loss = super().forward(y_pred, y_true.flatten())
        return loss

if choice == 'finetune_few':
    # 只训练这几个tokens权重这部分尚未调试好
    class PtuningBERT(BaseModel):
        def __init__(self):
            super().__init__()
            self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, with_mlm=True, tie_emb_prj_weight=True, custom_attention_mask=True)
            for name, param in self.bert.named_parameters():
                if ('word_embeddings' not in name) and ('mlmDecoder' not in name):
                    param.requires_grad = False  # 冻结除了word_embedding层意外的其他层
        def forward(self, token_ids, segment_ids):
            embedding = self.bert.embeddings.word_embeddings(token_ids)
            embedding_no_grad = embedding.detach()
            mask = torch.ones(token_ids.shape[1], dtype=torch.long, device=token_ids.device)
            mask[1:9] -= 1  # 只优化id为1~8的token
            embedding[:, mask.bool()] = embedding_no_grad[:, mask.bool()]
            attention_mask = (token_ids != tokenizer._token_pad_id)
            return self.bert([embedding, segment_ids, attention_mask])
    model = PtuningBERT().to(device)
    summary(model, input_data=next(iter(train_dataloader))[0])
elif choice == 'finetune_all':
    # 全部权重一起训练
    model = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, with_mlm=True).to(device)
    summary(model, input_data=[next(iter(train_dataloader))[0]])

# 定义使用的loss和optimizer,这里支持自定义
model.compile(
    loss=MyLoss(ignore_index=0),
    optimizer=Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=6e-4),
)

class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_acc = 0.

    def on_epoch_end(self, global_step, epoch, logs=None):
        val_acc = self.evaluate(valid_dataloader)
        test_acc = self.evaluate(test_dataloader)
        if val_acc > self.best_val_acc:
            self.best_val_acc = val_acc
            # model.save_weights('best_model.pt')
        print(f'valid_acc: {val_acc:.4f}, test_acc: {test_acc:.4f}, best_val_acc: {self.best_val_acc:.4f}\n')

    @staticmethod
    def evaluate(data):
        total, right = 0., 0.
        for x_true, y_true in data:
            y_pred = model.predict(x_true)[1]
            y_pred = y_pred[:, mask_idx, [neg_id, pos_id]].argmax(axis=1)
            y_true = (y_true[:, mask_idx] == pos_id).long()
            total += len(y_true)
            right += (y_true == y_pred).sum().item()
        return right / total


if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, epochs=10, steps_per_epoch=None, callbacks=[evaluator])
else:
    model.load_weights('best_model.pt')