"vscode:/vscode.git/clone" did not exist on "2ce1793a1d403a748e7173b7fa17955910959515"
training.py 6.89 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# 模型训练脚本
# 链接:https://github.com/kangyishuai/NEWS-TEXT-CLASSIFICATION
# 这里仅基于bert4torch实现了Top1解决方案中的finetune部分,直接使用了原作者的预训练权重转pytorch

import numpy as np
import pandas as pd
from bert4torch.models import build_transformer_model, BaseModel
from torch.utils.data import DataLoader
from bert4torch.snippets import sequence_padding, ListDataset, Callback, EarlyStopping
from bert4torch.tokenizers import Tokenizer
import torch.nn.functional as F
from sklearn.metrics import f1_score
from sklearn.model_selection import StratifiedKFold
import torch
from torch import nn, optim
from tqdm import tqdm

# BERT base
config_path = 'E:/Github/天池新闻分类/top1/pre_models/bert_config.json'
checkpoint_path = 'E:/Github/天池新闻分类/top1/pre_models/pytorch_model.bin'
dict_path = 'E:/Github/天池新闻分类/top1/pre_models/vocab.txt'
device = f'cuda' if torch.cuda.is_available() else 'cpu'

n = 5   # Cross-validation
SEED = 2020
num_classes = 14

maxlen = 512
max_segment = 2
batch_size = 4
grad_accum_steps = 64
drop = 0.2
lr = 2e-5
epochs = 100

def load_data(df):
    """加载数据。"""
    D = list()
    for _, row in df.iterrows():
        text = row['text']
        label = row['label']
        D.append((text, int(label)))
    return D


# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

def sentence_split(words):
    """句子截断。"""
    document_len = len(words)

    index = list(range(0, document_len, maxlen-2))
    index.append(document_len)

    segments = []
    for i in range(len(index) - 1):
        segment = words[index[i]: index[i + 1]]
        assert len(segment) > 0
        segment = tokenizer.tokens_to_ids(['[CLS]'] + segment + ['[SEP]'])
        segments.append(segment)

    assert len(segments) > 0
    if len(segments) > max_segment:
        segment_ = int(max_segment / 2)
        return segments[:segment_] + segments[-segment_:]
    else:
        return segments

def collate_fn(batch):
    batch_token_ids, batch_labels = [], []
    for text, label in batch:
        token_ids = sentence_split(text)
        token_ids = sequence_padding(token_ids, length=maxlen)
        batch_token_ids.append(token_ids)
        batch_labels.append(label)

    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids, length=max_segment), dtype=torch.long, device=device)
    batch_labels = torch.tensor(batch_labels, device=device)
    return batch_token_ids, batch_labels


class Attention(nn.Module):
    """注意力层。"""
    def __init__(self, hidden_size, **kwargs):
        self.hidden_size = hidden_size
        super().__init__(**kwargs)
        self.weight = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
        self.bias = nn.Parameter(torch.zeros(self.hidden_size))
        self.query = nn.Linear(self.hidden_size, 1, bias=False)

    def forward(self, x, mask):
        '''x: [btz, max_segment, hdsz]
        mask: [btz, max_segment, 1]
        '''
        mask = mask.squeeze(2)  # [btz, max_segment]

        # linear
        key = self.weight(x) + self.bias  # [btz, max_segment, hdsz]

        # compute attention
        outputs = self.query(key).squeeze(2)  # [btz, max_segment]
        outputs -= 1e32 * (1 - mask)
        attn_scores = F.softmax(outputs, dim=-1)
        attn_scores = attn_scores * mask
        attn_scores = attn_scores.reshape(-1, 1, attn_scores.shape[-1])  # [btz, 1, max_segment]

        outputs = torch.matmul(attn_scores, key).squeeze(1)  # [btz, hdsz]
        return outputs

# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self):
        super().__init__()
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, segment_vocab_size=0)
        self.dropout1 = nn.Dropout(0.1)
        self.dropout2 = nn.Dropout(0.1)
        self.attn = Attention(768)
        self.dense = nn.Linear(768, num_classes)

    def forward(self, token_ids):
        ''' token_ids: [btz, max_segment, max_len]
        '''
        input_mask = torch.any(token_ids, dim=-1, keepdim=True).long()  # [btz, max_segment, 1]
        token_ids = token_ids.reshape(-1, token_ids.shape[-1])  # [btz*max_segment, max_len]

        output = self.bert([token_ids])[:, 0]  # [btz*max_segment, hdsz]
        output = output.reshape((-1, max_segment, output.shape[-1]))  # [btz, max_segment, hdsz]
        output = output * input_mask
        output = self.dropout1(output)
        output = self.attn(output, input_mask)
        output = self.dropout2(output)
        output = self.dense(output)
        return output


class Evaluator(Callback):
    def __init__(self, model, dataloader, fold):
        super().__init__()
        self.model = model
        self.dataloader = dataloader
        self.best_val_f1 = 0.
        self.fold = fold

    def evaluate(self):
        y_true, y_pred = list(), list()
        for x, y in tqdm(self.dataloader, desc='evaluate'):
            y_true.append(y.cpu().numpy())
            y_pred.append(self.model.predict(x).argmax(axis=1).cpu().numpy())
        y_true = np.concatenate(y_true)
        y_pred = np.concatenate(y_pred)
        f1 = f1_score(y_true, y_pred, average='macro')
        return f1

    def on_epoch_end(self, steps, epoch, logs=None):
        val_f1 = self.evaluate()
        if val_f1 > self.best_val_f1:
            self.best_val_f1 = val_f1
            self.model.save_weights(f'best_model_fold{self.fold}.pt')
        logs['val_f1'] = val_f1  # 这个要设置,否则EarlyStopping不生效
        print(f'val_f1: {val_f1:.5f}, best_val_f1: {self.best_val_f1:.5f}\n')


def do_train(df_train):
    skf = StratifiedKFold(n_splits=n, random_state=SEED, shuffle=True)
    for fold, (trn_idx, val_idx) in enumerate(skf.split(df_train['text'], df_train['label']), 1):
        print(f'[Fold {fold}]')

        train_data = load_data(df_train.iloc[trn_idx])
        valid_data = load_data(df_train.iloc[val_idx])

        train_dataloader = DataLoader(ListDataset(data=train_data), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
        valid_dataloader = DataLoader(ListDataset(data=valid_data), batch_size=batch_size, collate_fn=collate_fn) 

        model = Model().to(device)
        model.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam(model.parameters(), lr=lr), adversarial_train={'name': 'fgm'})

        callbacks = [
            Evaluator(model, valid_dataloader, fold),
            EarlyStopping(monitor='val_f1', patience=5, verbose=1, mode='max'), # 需要在Evaluator后面
        ]
        model.fit(
            train_dataloader,
            steps_per_epoch=None,
            epochs=epochs,
            grad_accumulation_steps=grad_accum_steps,
            callbacks=callbacks
        )

        del model


if __name__ == '__main__':
    df_train = pd.read_csv('E:/Github/天池新闻分类/data/train_set.csv', sep='\t')
    df_train['text'] = df_train['text'].apply(lambda x: x.strip().split())
    do_train(df_train)