simbert_v2_supervised.py 6.48 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#! -*- coding: utf-8 -*-
# SimBERT_v2监督训练代码supervised部分
# 官方项目:https://github.com/ZhuiyiTechnology/roformer-sim

import torch
from torch import nn, optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, ListDataset, text_segmentate
from bert4torch.snippets import Callback, truncate_sequences, get_pool_emb
from bert4torch.tokenizers import Tokenizer
import json
import glob

# 基本信息
maxlen = 64
batch_size = 12
labels = ['contradiction', 'entailment', 'neutral']

# bert配置,需要加载stage2训练后的权重,这里直接加载官方最终的权重以示例
config_path = 'F:/Projects/pretrain_ckpt/simbert/[sushen_torch_base]--roformer_chinese_sim_char_base/config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/simbert/[sushen_torch_base]--roformer_chinese_sim_char_base/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/simbert/[sushen_torch_base]--roformer_chinese_sim_char_base/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

def split(text):
    """分割句子
    """
    seps, strips = u'\n。!?!?;;,, ', u';;,, '
    return text_segmentate(text, maxlen * 1.2, seps, strips)

class MyDataset(ListDataset):
    def load_data(self, file_path):
        dataset1_path, dataset2_path = file_path
        D1 = self.load_data_1(dataset1_path)
        D2 = self.load_data_2(dataset2_path)
        return D1 + D2

    @staticmethod
    def load_data_1(filenames, threshold=0.5):
        """加载数据(带标签)
        单条格式:(文本1, 文本2, 标签)
        """
        D = []
        for filename in filenames:
            with open(filename, encoding='utf-8') as f:
                for l in f:
                    l = l.strip().split('\t')
                    if len(l) != 3:
                        continue
                    l[0], l[1] = split(l[0])[0], split(l[1])[0]
                    D.append((l[0], l[1], int(float(l[2]) > threshold)))
        return D

    @staticmethod
    def load_data_2(dir_path):
        """加载数据(带标签)
        单条格式:(文本1, 文本2, 标签)
        """
        D = []
        for filename in glob.glob(dir_path):
            with open(filename, encoding='utf-8') as f:
                for l in f:
                    l = json.loads(l)
                    if l['gold_label'] not in labels:
                        continue
                    text1 = split(l['sentence1'])[0]
                    text2 = split(l['sentence2'])[0]
                    label = labels.index(l['gold_label']) + 2
                    D.append((text1, text2, label))
        return D


def truncate(text):
    """截断句子
    """
    seps, strips = u'\n。!?!?;;,, ', u';;,, '
    return text_segmentate(text, maxlen - 2, seps, strips)[0]

def collate_fn(batch):
    batch_token_ids, batch_segment_ids, batch_labels = [], [], []
    for text1, text2, label in batch:
        for text in [text1, text2]:
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
        batch_labels.append([label])
    
    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device)
    return [batch_token_ids, batch_segment_ids], batch_labels

# 加载数据集
data_path = 'F:/Projects/data/corpus/sentence_embedding/'
dataset1_path = []
for task_name in ['ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STS-B']:
    for f in ['train', 'valid']:
        threshold = 2.5 if task_name == 'STS-B' else 0.5
        filename = '%s%s/%s.%s.data' % (data_path, task_name, task_name, f)
        dataset1_path.append(filename)
dataset2_path = 'F:/Projects/data/corpus/sentence_embedding/XNLI-MT-1.0/cnsd/cnsd-*/*.jsonl'
train_dataloader = DataLoader(MyDataset([dataset1_path, dataset2_path]), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 

# 建立加载模型
class Model(BaseModel):
    def __init__(self, pool_method='cls'):
        super().__init__()
        self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, model='roformer', 
                                            with_pool='linear', dropout_rate=0.2)
        self.pool_method = pool_method
        self.dense = nn.Linear(768*3, 5, bias=False)

    def forward(self, token_ids, segment_ids):
        hidden_state, pool_cls = self.bert([token_ids, segment_ids])
        sen_emb = get_pool_emb(hidden_state, pool_cls, token_ids.gt(0).long(), self.pool_method)  # [btz*2, hdsz]
        # 向量合并:a、b、|a-b|拼接
        u, v = sen_emb[::2], sen_emb[1::2]
        sen_emb_concat = torch.cat([u, v, torch.abs(u-v)], dim=-1)  # [btz, hdsz*3]
        y_pred = self.dense(sen_emb_concat)  # [btz, 5]
        return y_pred

model = Model(pool_method='cls').to(device)

class MyLoss(nn.Module):
    """loss分
    """
    def __init__(self) -> None:
        super().__init__()
        self.mask = torch.tensor([0,0,1,1,1], device=device)

    def forward(self, y_pred, y_true):
        '''如果是两分类数据,则把后三位置-inf,如果是三分类数据,把前两位置-inf
        '''
        task = (y_true < 1.5).long()
        y_pred_1 = y_pred - self.mask * 1e12
        y_pred_2 = y_pred - (1-self.mask) * 1e12
        y_pred = task * y_pred_1 + (1-task) * y_pred_2
        return F.cross_entropy(y_pred, y_true.flatten())

model.compile(loss=MyLoss(), optimizer=optim.Adam(model.parameters(), 1e-5), metrics=['seq2seq_loss', 'similarity_loss'])


class Evaluator(Callback):
    """评估模型
    """
    def __init__(self):
        self.lowest = 1e10

    def on_epoch_end(self, global_step, epoch, logs=None):
        # 保存最优
        if logs['loss'] <= self.lowest:
            self.lowest = logs['loss']
            # model.save_weights('./best_model.pt')

if __name__ == '__main__':    
    evaluator = Evaluator()
    model.fit(train_dataloader, epochs=50, steps_per_epoch=200, callbacks=[evaluator])
else:
    model.load_weights('./best_model.pt')