"vscode:/vscode.git/clone" did not exist on "b6b7ba4d7c064e8a8e2227efdf40d75ca8334e3d"
test_tilelang_language_mask_op.py 5.7 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import tilelang
import tilelang.language as T
import torch


# add decorator @tilelang.jit if you want to return a torch function
# @tilelang.jit
def tilelang_copy_mask_parallel(M, N, block_M, block_N, dtype="float16"):

    @T.prim_func
    def main(
            A: T.Tensor((M, N), dtype),
            B: T.Tensor((M, N), dtype),
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)

            tx = T.get_thread_binding(0)

            if tx < 128:
                for i, k in T.Parallel(block_M, block_N):
                    A_shared[i, k] = A[by * block_M + i, bx * block_N + k]

            T.copy(A_shared, B[by * block_M, bx * block_N])

    return main


def run_tilelang_copy_mask_parallel(M=1024, N=1024, block_M=128, block_N=128, dtype="float16"):
    program = tilelang_copy_mask_parallel(M, N, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
        pass_configs={
            "tl.disable_warp_specialized": True,
            "tl.disable_tma_lower": True
        })
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy_mask_parallel():
    run_tilelang_copy_mask_parallel(M=1024, N=1024, block_M=128, block_N=128)


# add decorator @tilelang.jit if you want to return a torch function
# @tilelang.jit
def tilelang_copy_mask_copy(M, N, block_M, block_N, dtype="float16"):

    @T.prim_func
    def main(
            A: T.Tensor((M, N), dtype),
            B: T.Tensor((M, N), dtype),
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)

            tx = T.get_thread_binding(0)

            if tx < 128:
                T.copy(A[by * block_M, bx * block_N], A_shared)

            T.copy(A_shared, B[by * block_M, bx * block_N])

    return main


def run_tilelang_copy_mask_copy(M=1024, N=1024, block_M=128, block_N=128, dtype="float16"):
    program = tilelang_copy_mask_copy(M, N, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
        pass_configs={
            "tl.disable_warp_specialized": True,
            "tl.disable_tma_lower": True
        })
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy_mask_copy():
    run_tilelang_copy_mask_copy(M=1024, N=1024, block_M=128, block_N=128)


# add decorator @tilelang.jit if you want to return a torch function
# @tilelang.jit
def tilelang_copy_mask_parallel_range(M, N, block_M, block_N, dtype="float16"):

    @T.prim_func
    def main(
            A: T.Tensor((M, N), dtype),
            B: T.Tensor((M, N), dtype),
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)

            tx = T.get_thread_binding(0)

            if tx >= 128 and tx < 256:
                for i, k in T.Parallel(block_M, block_N):
                    A_shared[i, k] = A[by * block_M + i, bx * block_N + k]

            T.copy(A_shared, B[by * block_M, bx * block_N])

    return main


def run_tilelang_copy_mask_parallel_range(M=1024,
                                          N=1024,
                                          block_M=128,
                                          block_N=128,
                                          dtype="float16"):
    program = tilelang_copy_mask_parallel_range(M, N, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
        pass_configs={
            "tl.disable_warp_specialized": True,
            "tl.disable_tma_lower": True
        })
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy_mask_parallel_range():
    run_tilelang_copy_mask_parallel_range(M=1024, N=1024, block_M=128, block_N=128)


# add decorator @tilelang.jit if you want to return a torch function
# @tilelang.jit
def tilelang_copy_mask_copy_range(M, N, block_M, block_N, dtype="float16"):

    @T.prim_func
    def main(
            A: T.Tensor((M, N), dtype),
            B: T.Tensor((M, N), dtype),
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=256) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_N), dtype)

            tx = T.get_thread_binding(0)

            if tx >= 128 and tx < 256:
                T.copy(A[by * block_M, bx * block_N], A_shared)

            T.copy(A_shared, B[by * block_M, bx * block_N])

    return main


def run_tilelang_copy_mask_copy_range(M=1024, N=1024, block_M=128, block_N=128, dtype="float16"):
    program = tilelang_copy_mask_copy_range(M, N, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
        pass_configs={
            "tl.disable_warp_specialized": True,
            "tl.disable_tma_lower": True
        })
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy_mask_copy_range():
    run_tilelang_copy_mask_copy_range(M=1024, N=1024, block_M=128, block_N=128)


if __name__ == "__main__":
    test_tilelang_copy_mask_copy_range()