".github/git@developer.sourcefind.cn:change/sglang.git" did not exist on "7a27e798ca2d8f6bfccf75507360d702e03f810d"
test_tilelang_kernel_gemv_simt.py 6.04 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.backends
import tilelang.testing
from tilelang import tvm as tvm
from tvm import DataType
import tilelang.language as T
from tilelang import JITKernel
from tilelang.transform.simplify import apply_simplify
from tilelang.utils.tensor import map_torch_type
from typing import Optional

tilelang.testing.set_random_seed(0)


def gemv_simt(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    trans_A: bool,
    trans_B: bool,
    with_bias: bool = False,
    n_partition: Optional[int] = 4,
    reduce_thread: Optional[int] = 32,
):
    assert n_partition is not None, "n_partition must be provided"
    assert reduce_thread is not None, (
        "reduce_thread must be provided currently, as related bitblas.gpu.gemv.GEMV"
        "sch_outer_reduction_with_config is not implemented")

    assert isinstance(N, int) and isinstance(K, int), "Do not support dynamic N and K Currently"

    assert trans_A is False, "Dequantize only implement for trans_A=False currently"
    assert trans_B is True, "Dequantize only implement for trans_B=TRue currently"

    MAX_TRANSACTION_SIZE_IN_BITS = 128
    micro_size_k = MAX_TRANSACTION_SIZE_IN_BITS // DataType(in_dtype).bits

    block_K = reduce_thread * micro_size_k

    A_shape = (M, K)
    B_shape = (N, K)
    Bias_shape = (N,)
    C_shape = (M, N)

    dp4a_size = 4
    use_dp4a = in_dtype == "int8" and accum_dtype == "int32"

    @T.prim_func
    def main(
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            Bias: T.Tensor(Bias_shape, out_dtype),
            C: T.Tensor(C_shape, out_dtype),
    ):
        with T.Kernel(
                T.ceildiv(N, n_partition), M, threads=(reduce_thread, n_partition)) as (
                    bx,
                    by,
                ):
            A_local = T.alloc_local((micro_size_k,), in_dtype)
            B_local = T.alloc_local((micro_size_k,), in_dtype)
            accum_res = T.alloc_local((1,), accum_dtype)
            reduced_accum_res = T.alloc_local((1,), accum_dtype)

            kr = T.get_thread_binding(0)
            ni = T.get_thread_binding(1)

            T.clear(accum_res)
            for ko in T.serial(T.ceildiv(K, block_K)):
                for v in T.vectorized(micro_size_k):
                    A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]

                for v in T.vectorized(micro_size_k):
                    B_local[v] = B[
                        bx * n_partition + ni,
                        ko * block_K + kr * micro_size_k + v,
                    ]

                if use_dp4a:
                    for ki in T.serial(micro_size_k // dp4a_size):
                        T.dp4a(
                            A_local[ki * dp4a_size],
                            B_local[ki * dp4a_size],
                            accum_res[0],
                        )
                else:
                    for ki in T.serial(micro_size_k):
                        accum_res[0] += A_local[ki].astype(accum_dtype) * B_local[ki].astype(
                            accum_dtype)

            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        accum_res[0],
                        True,
                        reduced_accum_res[0],
                        kr,
                        dtype="handle",
                    ))
            if kr == 0:
                if with_bias:
                    C[by,
                      bx * n_partition + ni] = reduced_accum_res[0] + Bias[bx * n_partition + ni]
                else:
                    C[by, bx * n_partition + ni] = reduced_accum_res[0]

    return apply_simplify(main)


def evaluate_gemv_simt(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    trans_A: bool = False,
    trans_B: bool = True,
    with_bias: bool = False,
):
    program = gemv_simt(M, N, K, in_dtype, out_dtype, accum_dtype, trans_A, trans_B, with_bias)

    kernel = JITKernel(program, target="cuda")

    in_dtype = map_torch_type(in_dtype)
    out_dtype = map_torch_type(out_dtype)
    accum_dtype = map_torch_type(accum_dtype)

    if in_dtype in {torch.int8, torch.int32}:
        A = torch.randint(-128, 128, (M, K), dtype=torch.int8).to(in_dtype).cuda()
        B = torch.randint(-128, 128, (N, K), dtype=torch.int8).to(in_dtype).cuda()
        Bias = torch.randint(-128, 128, (N,), dtype=torch.int32).to(accum_dtype).cuda()
    elif in_dtype in {torch.float8_e4m3fn, torch.float8_e5m2}:
        A = torch.randn(M, K).to(in_dtype).cuda()
        B = torch.randn(N, K).to(in_dtype).cuda()
        Bias = torch.randn(N).to(accum_dtype).cuda()
    else:
        A = torch.randn(M, K).to(in_dtype).cuda() - 0.5
        B = torch.randn(N, K).to(in_dtype).cuda() - 0.5
        Bias = torch.randn(N).to(accum_dtype).cuda() - 0.5

    C = torch.zeros(M, N).to(out_dtype).cuda()

    if with_bias:
        kernel(A, B, Bias, C)
    else:
        kernel(A, B, C)

    ref_c = torch.mm(A.to(torch.float32), B.T.to(torch.float32))
    if with_bias:
        ref_c += Bias.to(torch.float32)
    ref_c = ref_c.to(out_dtype)
    print(C)
    print(ref_c)
    tilelang.testing.torch_assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(8, 0)
def test_gemv_simt():
    evaluate_gemv_simt(1, 1024, 1024, "float16", "float16", "float16", with_bias=False)
    evaluate_gemv_simt(1, 1024, 1024, "int8", "int32", "int32", with_bias=False)


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(8, 9)
def test_gemv_simt_fp8():
    evaluate_gemv_simt(1, 1024, 1024, "float8_e4m3", "float32", "float32", with_bias=False)
    evaluate_gemv_simt(1, 1024, 1024, "float8_e5m2", "float32", "float32", with_bias=False)


if __name__ == "__main__":
    tilelang.testing.main()