test_tilelang_jit_gemm.py 2.96 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from tilelang import tvm as tvm
import tilelang.testing
import tilelang
import torch


@tilelang.jit(
    out_idx=-1,  # create the output tensor during runtime
)
def matmul_kernel_jit(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    import tilelang.language as T

    @T.prim_func
    def main(
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm_kernel_jit(
    M,
    N,
    K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    dtypeAccum,
    block_M,
    block_N,
    block_K,
    num_stages=0,
    num_threads=128,
):
    matmul_kernel = matmul_kernel_jit(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_stages,
        num_threads,
    )

    A = torch.randn(M, K, dtype=torch.__getattribute__(in_dtype)).cuda()
    B = torch.randn(K, N, dtype=torch.__getattribute__(in_dtype)).cuda()

    if trans_A:
        A = A.T
    if trans_B:
        B = B.T

    def ref_program(A, B):
        import torch
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    ref_C = ref_program(A, B)
    C = matmul_kernel(A, B)

    tilelang.testing.torch_assert_close(C, ref_C, atol=1e-2, rtol=1e-2, max_mismatched_ratio=0.05)


def test_gemm_f16f16f16_nn_kernel_jit():
    run_gemm_kernel_jit(
        512,
        1024,
        768,
        False,
        False,
        "float16",
        "float16",
        "float16",
        128,
        128,
        32,
        0,
    )


if __name__ == "__main__":
    tilelang.testing.main()