"...resnet50_tensorflow.git" did not exist on "21286f777dc89d6dd905985df5b1af1facc89bb3"
test_tilelang_cpu_gemm.py 4.14 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import tilelang
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
import torch


def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"):
    num_stages = 0

    @T.prim_func
    def matmul(
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((K, N), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), is_cpu=True) as (bx, by):
            A_local = T.alloc_local((block_M, block_K), dtype)
            B_local = T.alloc_local((block_K, block_N), dtype)
            C_local = T.alloc_local((block_M, block_N), accum_dtype)

            T.clear(C_local)

            # Apply layout optimizations or define your own layout
            # (Optional).
            # T.annotate_layout(
            #     {
            #         A_local: make_swizzle_layout(A_local),
            #         B_local: make_swizzle_layout(B_local),
            #     }
            # )

            for ko in T.Pipelined(K // block_K, num_stages=num_stages):

                T.copy(A[by * block_M, ko * block_K], A_local)

                # Or Copy with Parallel
                for k, j in T.Parallel(block_K, block_N):
                    B_local[k, j] = B[ko * block_K + k, by * block_N + j]

                for i, j, k in T.grid(block_M, block_N, block_K):
                    C_local[i, j] += A_local[i, k] * B_local[k, j]

            T.copy(C_local, C[by * block_M, bx * block_N])

    return matmul


def assert_matmul_codegen(M=1024, N=1024, K=1024, block_M=128, block_N=128, block_K=32):
    func = matmul(M, N, K, block_M, block_N, block_K)

    with tvm.target.Target("c"):
        artifact = tilelang.lower(func)

    code = artifact.kernel_source

    assert code is not None, "Code generation failed"


def test_matmul_codegen():
    assert_matmul_codegen(M=1024, N=1024, K=1024, block_M=128, block_N=128, block_K=32)


def test_matmul_compile():

    def matmul_jit_test(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"):
        # a simple kernel just for jit test
        @T.prim_func
        def matmul(
                A: T.Tensor((M, K), dtype),
                B: T.Tensor((K, N), dtype),
                C: T.Tensor((M, N), dtype),
        ):
            with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), is_cpu=True) as (bx, by):
                A_local = T.alloc_local((block_M, block_K), dtype)
                B_local = T.alloc_local((block_K, block_N), dtype)
                C_local = T.alloc_local((block_M, block_N), accum_dtype)

                for p in T.serial(block_M):
                    for w in T.serial(block_N):
                        C_local[p, w] = 0
                for ko in T.serial(K // block_K):
                    for i in T.serial(block_M):
                        for k in T.serial(block_K):
                            A_local[i, k] = A[by * block_M + i, ko * block_K + k]

                    for k in T.serial(block_K):
                        for j in T.serial(block_N):
                            B_local[k, j] = B[ko * block_K + k, bx * block_N + j]

                    for i in T.serial(block_M):
                        for j in T.serial(block_N):
                            for k in T.serial(block_K):
                                C_local[i, j] += A_local[i, k] * B_local[k, j]

                for i in T.serial(block_M):
                    for j in T.serial(block_N):
                        C[by * block_M + i, bx * block_N + j] = C_local[i, j]

        return matmul

    M, N, K = 1024, 512, 512
    block_M, block_N, block_K = M // 4, N // 4, K // 4
    cpu_func = matmul_jit_test(M, N, K, block_M, block_N, block_K)
    with tvm.target.Target("c"):
        complied_fun = tilelang.compile(cpu_func, -1, execution_backend="ctypes")

    in_dtype = "float16"
    A = torch.randn(M, K, dtype=torch.__getattribute__(in_dtype))
    B = torch.randn(K, N, dtype=torch.__getattribute__(in_dtype))

    C = complied_fun(A, B)
    C_torch = torch.matmul(A, B)

    tilelang.testing.torch_assert_close(C, C_torch, atol=1e-2, rtol=1e-2, max_mismatched_ratio=0.05)


if __name__ == "__main__":
    tilelang.testing.main()