test_tilelang_gemm_mfma_preshuffle.py 9.88 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import torch
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
from tilelang.intrinsics.mfma_macro_generator import MatrixCorePreshuffleIntrinEmitter
from tilelang.transform import simplify_prim_func

tilelang.testing.set_random_seed(0)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
    b_preshuffle=False,
    b_g2l_load=False,
):

    micro_size_x = micro_size_y = micro_size_k = 16

    if in_dtype in {"float8_e4m3fnuz", "int8"}:
        micro_size_k = 32

    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32

    # for preshuffle_b, warp_layout = {1, 4}
    if b_preshuffle:
        block_row_warps = 1
        block_col_warps = 4
        warp_row_tiles = 64
        warp_col_tiles = 16

    chunk = 256 * k_pack

    pack_size_k = micro_size_k * k_pack

    shared_scope = "shared"

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (K, M) if a_transposed else (M, K)
    if b_preshuffle:
        B_shape = (N // micro_size_y, K // pack_size_k, micro_size_y,
                   pack_size_k) if b_transposed else (K // pack_size_k, N // micro_size_y,
                                                      pack_size_k, micro_size_y)
    else:
        B_shape = (N, K) if b_transposed else (K, N)

    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    if b_preshuffle:
        B_shared_shape = (block_N // micro_size_y, block_K // pack_size_k, micro_size_y,
                          pack_size_k) if b_transposed else (block_K // pack_size_k,
                                                             block_N // micro_size_y, pack_size_k,
                                                             micro_size_y)
    else:
        B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mfma_emitter = MatrixCorePreshuffleIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=a_transposed,
        b_transposed=b_transposed,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
        k_pack=k_pack,
        b_preshuffle=b_preshuffle,
    )

    @T.prim_func
    def main(
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
            })

            num_ko = K // block_K
            num_ki = block_K // (k_pack * micro_size_k)

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined(num_ko, num_stages=0):

                # Load A into shared memory
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)

                # Load B into shared memory
                if b_g2l_load is False:
                    if b_transposed:
                        for j, k, jj, kk in T.Parallel(block_N // micro_size_y,
                                                       block_K // pack_size_k, micro_size_y,
                                                       pack_size_k):
                            B_shared[j, k, jj, kk] = B[bx * block_N // micro_size_y + j,
                                                       ko * block_K // pack_size_k + k, jj, kk]
                    else:
                        for k, j, kk, jj in T.Parallel(block_K // pack_size_k,
                                                       block_N // micro_size_y, pack_size_k,
                                                       micro_size_y):
                            B_shared[k, j, kk, jj] = B[ko * block_K // pack_size_k + k,
                                                       bx * block_N // micro_size_y + j, kk, jj]

                for ki in T.serial(0, num_ki):

                    # Load A S2L
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    if b_g2l_load:
                        # Load B G2L
                        mfma_emitter.ldmatrix_b(B_local, B, ki + ko * num_ki, pid_m=by, pid_n=bx)
                    else:
                        # Load B S2L
                        mfma_emitter.ldmatrix_b(
                            B_local,
                            B_shared,
                            ki,
                        )

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
            mfma_emitter.stmatrix(
                C_local,
                C,
                pid_m=by,
                pid_n=bx,
            )

    return main


def shuffle_weight(
        x: torch.Tensor,
        layout=(16, 32),
        k_pack=1,
        is_transpose=False,
) -> torch.Tensor:
    IN, IK = layout
    BK = IK * k_pack
    BN = IN

    N, K = (x.shape[-2], x.shape[-1]) if is_transpose else (x.shape[-1], x.shape[-2])
    assert N % BN == 0
    assert K % BK == 0

    x = x.view(N // BN, BN, K // BK, BK) if is_transpose else x.view(K // BK, BK, N // BN, BN)
    x = x.permute(0, 2, 1, 3)
    return x.contiguous()


def assert_tl_matmul_correctness(M,
                                 N,
                                 K,
                                 in_dtype,
                                 out_dtype,
                                 accum_dtype="float32",
                                 a_transposed=False,
                                 b_transposed=True,
                                 k_pack=1,
                                 b_preshuffle=False,
                                 b_g2l_load=False):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed,
                       k_pack, b_preshuffle, b_g2l_load)
    print(matmul)
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
    # src_code is the generated cuda source
    assert src_code is not None
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    if in_dtype == "int8":
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
    else:
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))

    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    B_preshuffle = B
    if b_preshuffle:
        B_preshuffle = shuffle_weight(B_preshuffle, k_pack=k_pack, is_transpose=b_transposed)
        kernel(A, B_preshuffle, C)
    else:
        kernel(A, B, C)

    print(kernel.get_kernel_source())

    profiler = kernel.get_profiler()

    latency = profiler.do_bench()

    # Ensure that the latency is not None
    assert latency is not None

    if a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.T.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    elif a_transposed and not b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.Tto(torch.float32),
                             B.to(torch.float32)).to(getattr(torch, out_dtype))
    elif not a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

    print(C)
    print(ref_c)

    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(
        256, 256, 256, "int8", "int32", accum_dtype="int32", b_preshuffle=True)
    assert_tl_matmul_correctness(
        256, 256, 256, "int8", "int32", accum_dtype="int32", b_preshuffle=True)
    assert_tl_matmul_correctness(
        256, 256, 256, "int8", "int32", b_transposed=False, accum_dtype="int32", b_preshuffle=True)

    assert_tl_matmul_correctness(
        256, 256, 512, "int8", "int32", accum_dtype="int32", k_pack=2, b_preshuffle=True)
    assert_tl_matmul_correctness(
        256,
        256,
        512,
        "int8",
        "int32",
        b_transposed=False,
        accum_dtype="int32",
        k_pack=2,
        b_preshuffle=True)


if __name__ == "__main__":
    tilelang.testing.main()