vectorize_loop.cc 30.3 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file vectorize_loop.cc
 */
// Loop vectorizer as in Halide pipeline.
#include <tvm/arith/analyzer.h>
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <utility>
#include <vector>

#include "arith/scalable_expression.h"
#include "tir/analysis/check_contains.h"

namespace tvm {
namespace tl {

using namespace tir;

/*!
 * \brief Perform data type legalization on the given BufferLoadNode pointer.
 * Equal to BufferLoadNode::LegalizeDType, but operates on a pointer.
 * \param n A pointer to a writable BufferLoadNode.
 */
static void LegalizeBufferLoadDType(BufferLoadNode *n) {
  // Check that all indices except the last one have a scalar dtype
  for (int i = 0; i < static_cast<int>(n->indices.size()) - 1; i++) {
    ICHECK(n->indices[i].dtype().is_scalar())
        << "Only the last index of a buffer access may be a vector type.";
  }

  // If there are no indices, set the dtype to the buffer's dtype
  if (n->indices.empty()) {
    n->dtype = n->buffer->dtype;
  } else {
    auto index_dtype = n->indices.back().dtype();
    bool is_buffer_dtype_scalable = n->buffer->dtype.is_scalable_vector();
    bool is_index_scalable = index_dtype.is_scalable_vector();

    // Do not allow both index dtype and buffer dtype to be scalable vectors
    ICHECK(!(is_index_scalable && is_buffer_dtype_scalable))
        << "Index dtype and buffer dtype cannot both be scalable.";

    if (is_index_scalable) {
      // Index is a scalable vector, while the buffer is not
      n->dtype = n->buffer->dtype.with_scalable_vscale_factor(
          index_dtype.vscale_factor() * n->buffer->dtype.lanes());
    } else if (is_buffer_dtype_scalable) {
      // The buffer is a scalable vector, while the index is not
      n->dtype = n->buffer->dtype.with_scalable_vscale_factor(
          n->buffer->dtype.vscale_factor() * index_dtype.lanes());
    } else {
      // Neither side is a scalable vector, multiply lanes
      n->dtype = n->buffer->dtype.with_lanes(index_dtype.lanes() *
                                             n->buffer->dtype.lanes());
    }
  }
}

inline PrimExpr CreateNewLanes(bool is_scalable, int lanes_or_vscale_factor) {
  if (is_scalable) {
    return Mul(Call(DataType::Int(32), builtin::vscale(), {}),
               lanes_or_vscale_factor);
  } else {
    return lanes_or_vscale_factor;
  }
}

inline PrimExpr BroadcastTo(PrimExpr e, int lanes, bool is_scalable) {
  // Check if e is already in the expected form
  if (e.dtype().get_lanes_or_vscale_factor() == lanes &&
      e.dtype().is_scalable_vector() == is_scalable)
    return e;

  if (const BroadcastNode *op = e.as<BroadcastNode>()) {
    ICHECK(op->dtype.is_scalable_vector() == is_scalable)
        << "Can't broadcast between scalable and fixed length vectors.";
    int e_lanes = op->dtype.get_lanes_or_vscale_factor();

    if (lanes % e_lanes == 0) {
      return Broadcast(op->value, CreateNewLanes(is_scalable, lanes));
    }
  }

  ICHECK(e.dtype().is_scalar())
      << "Cannot broadcast lanes=" << e.dtype().get_lanes_or_vscale_factor()
      << " is_scalable=" << e.dtype().is_scalable_vector() << " to " << lanes;

  return Broadcast(e, CreateNewLanes(is_scalable, lanes));
}

// Rewrite vectorized allocation access
// This is necessary for making each vector component containing its own
// workspace. Originates from Halide's loop vectorizer
//
// s[i] = s[i * lanes + var]
//
// The same principle applies when using one thread to simulate multiple
// context.
//
class TLVecAllocAccess : public StmtExprMutator {
public:
  TLVecAllocAccess(const VarNode *buf, Var var, PrimExpr var_lanes)
      : buf_(buf), var_(std::move(var)), var_lanes_(std::move(var_lanes)) {}

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    return UpdateBufferAccess(load);
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    return UpdateBufferAccess(store);
  }

private:
  template <typename Node> Node UpdateBufferAccess(Node node) {
    // Only update the buffer that's being replaced.
    if (node->buffer->data.get() != buf_) {
      return node;
    }

    // Find/make a Buffer object with the correct updated shape.
    Buffer buf;
    auto it = buffer_map_.find(node->buffer.get());
    if (it != buffer_map_.end()) {
      buf = it->second;
    } else {
      // Extend the least significant dimension by a factor of
      // var_lanes_.  Typically, this will be a 1-d index into a flat
      // memory space.
      Array<PrimExpr> shape = node->buffer->shape;
      shape.Set(shape.size() - 1,
                analyzer_.Simplify(shape[shape.size() - 1] * var_lanes_));

      // TODO(Lunderberg): Move this pass to be prior to
      // StorageFlatten/FlattenBuffer, implement by appending a
      // dimension to the buffer.  Since it is currently after the
      // flattening, the strides are not technically necessary, but
      // are updated for consistency.

      // Update strides if defined.
      Array<PrimExpr> strides;
      for (size_t i = 0; i < strides.size(); i++) {
        PrimExpr stride = strides[i];
        if (i != strides.size() - 1) {
          stride *= var_lanes_;
        }
        strides.push_back(analyzer_.Simplify(stride));
      }

      // Copy everything into the new buffer.
      buf = node->buffer;
      auto buf_writer = buf.CopyOnWrite();
      buf_writer->shape = shape;
      buf_writer->strides = strides;
      buffer_map_[buf.get()] = buf;
    }

    return node;
  }

  // buffer var
  const VarNode *buf_;
  // Updated buffer objects.
  std::unordered_map<const BufferNode *, Buffer> buffer_map_;
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // Analyzer for simplifications
  arith::Analyzer analyzer_;
};

// We use ExprFunctor directly instead of StmtExprMutator
// This is because the transformation can change the dtype of the Expr
// The existing ExprMutator transformation rules may not be well defined.
class TLVectorizer : public StmtMutator,
                     public ExprFunctor<PrimExpr(const PrimExpr &)> {
public:
  using ExprFunctor::VisitExpr;
  using StmtMutator::operator();

  TLVectorizer(const Var &var, const PrimExpr &var_lanes)
      : var_(var), var_lanes_(var_lanes) {
    ramp_ = Ramp(IntImm(var->dtype, 0), IntImm(var->dtype, 1), var_lanes);
  }

  Stmt VisitStmt(const Stmt &stmt) final {
    ICHECK(!need_scalarize_);
    Stmt ret = StmtMutator::VisitStmt(stmt);
    if (need_scalarize_) {
      need_scalarize_ = false;
      return Scalarize(stmt);
    } else {
      return ret;
    }
  }

  PrimExpr VisitExpr(const PrimExpr &e) final {
    return ExprFunctor::VisitExpr(e);
  }

  PrimExpr VisitExpr_(const AddNode *op) final {
    return AddSubVec(
        op, [](PrimExpr a, PrimExpr b) { return std::move(a) + std::move(b); });
  }

  PrimExpr VisitExpr_(const SubNode *op) final {
    return AddSubVec(
        op, [](PrimExpr a, PrimExpr b) { return std::move(a) - std::move(b); });
  }

  PrimExpr VisitExpr_(const MulNode *op) final {
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      bool is_vec_a = a.dtype().is_scalable_or_fixed_length_vector();
      bool is_vec_b = b.dtype().is_scalable_or_fixed_length_vector();
      if (is_vec_a && is_vec_b) {
        // Let's not multiply scalable and fixed length vectors
        ICHECK(a.dtype().is_scalable_vector() == b.dtype().is_scalable_vector())
            << "Fixed length and scalable vectors can't be mixed in "
               "multiplication.";
      }
      if (is_vec_a || is_vec_b) {
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
        if (a_ramp && b.dtype().is_scalar() && analyzer_.CanProve(b > 0)) {
          PrimExpr lanes = a_ramp->lanes;
          return Ramp(a_ramp->base * b, a_ramp->stride * b, lanes);
        }
        if (b_ramp && a.dtype().is_scalar() && analyzer_.CanProve(a > 0)) {
          PrimExpr lanes = b_ramp->lanes;
          return Ramp(b_ramp->base * a, b_ramp->stride * a, lanes);
        }
        int a_lanes = a.dtype().get_lanes_or_vscale_factor();
        int b_lanes = b.dtype().get_lanes_or_vscale_factor();
        int max_lanes = std::max(a_lanes, b_lanes);
        bool is_scalable =
            a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
        return Mul(BroadcastTo(a, max_lanes, is_scalable),
                   BroadcastTo(b, max_lanes, is_scalable));
      }
    }
    return BinaryVec<Mul>(op);
  }
  PrimExpr VisitExpr_(const DivNode *op) final { return BinaryVec<Div>(op); }
  PrimExpr VisitExpr_(const ModNode *op) final { return BinaryVec<Mod>(op); }
  PrimExpr VisitExpr_(const FloorDivNode *op) final {
    return BinaryVec<FloorDiv>(op);
  }
  PrimExpr VisitExpr_(const FloorModNode *op) final {
    return BinaryVec<FloorMod>(op);
  }
  PrimExpr VisitExpr_(const MinNode *op) final { return BinaryVec<Min>(op); }
  PrimExpr VisitExpr_(const MaxNode *op) final { return BinaryVec<Max>(op); }
  PrimExpr VisitExpr_(const EQNode *op) final { return BinaryVec<EQ>(op); }
  PrimExpr VisitExpr_(const NENode *op) final { return BinaryVec<NE>(op); }
  PrimExpr VisitExpr_(const LTNode *op) final { return BinaryVec<LT>(op); }
  PrimExpr VisitExpr_(const LENode *op) final { return BinaryVec<LE>(op); }
  PrimExpr VisitExpr_(const GTNode *op) final { return BinaryVec<GT>(op); }
  PrimExpr VisitExpr_(const GENode *op) final { return BinaryVec<GE>(op); }
  PrimExpr VisitExpr_(const AndNode *op) final { return BinaryVec<And>(op); }
  PrimExpr VisitExpr_(const OrNode *op) final { return BinaryVec<Or>(op); }

  PrimExpr VisitExpr_(const NotNode *op) final {
    PrimExpr a = this->VisitExpr(op->a);
    if (a.same_as(op->a)) {
      return GetRef<PrimExpr>(op);
    } else {
      return !(a);
    }
  }

  PrimExpr VisitExpr_(const RampNode *op) final {
    PrimExpr base = this->VisitExpr(op->base);
    PrimExpr stride = this->VisitExpr(op->stride);
    ICHECK(!base.dtype().is_scalable_vector())
        << "Creating scalable vectors from existing vectors is not supported.";
    ICHECK(!stride.dtype().is_scalable_vector())
        << "Ramp stride with scalable dtype is not supported";
    if (base.dtype().is_fixed_length_vector() && stride.dtype().is_scalar()) {
      ICHECK(op->lanes->IsInstance<IntImmNode>())
          << "Vectorizing over existing scalable vectors is not supported.";
      const RampNode *base_ramp = base.as<RampNode>();
      int op_lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
      int base_ramp_lanes =
          static_cast<int>(Downcast<IntImm>(base_ramp->lanes)->value);
      if (analyzer_.CanProve(base_ramp->stride ==
                             stride *
                                 make_const(stride.dtype(), base_ramp_lanes))) {
        return Ramp(base_ramp->base, stride, op_lanes * base_ramp_lanes);
      }
    }
    int lanes = std::max(base.dtype().lanes(), stride.dtype().lanes());
    base = BroadcastTo(base, lanes, false);
    stride = BroadcastTo(stride, lanes, false);
    Array<PrimExpr> elems;
    for (int i = 0; i < lanes; ++i) {
      elems.push_back(Ramp(Shuffle::ExtractElement(base, i),
                           Shuffle::ExtractElement(stride, i), op->lanes));
    }
    return Shuffle::Concat(elems);
  }

  PrimExpr VisitExpr_(const BroadcastNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    if (value.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      return Broadcast(op->value, op->lanes);
    }
  }

  PrimExpr VisitExpr_(const SelectNode *op) final {
    PrimExpr cond = this->VisitExpr(op->condition);
    PrimExpr t = this->VisitExpr(op->true_value);
    PrimExpr f = this->VisitExpr(op->false_value);
    if (cond.same_as(op->condition) && t.same_as(op->true_value) &&
        f.same_as(op->false_value)) {
      return GetRef<PrimExpr>(op);
    } else {
      int cond_lanes = cond.dtype().get_lanes_or_vscale_factor();
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(std::max(cond_lanes, t_lanes), f_lanes);
      bool is_scalable = cond.dtype().is_scalable_vector() ||
                         t.dtype().is_scalable_vector() ||
                         f.dtype().is_scalable_vector();
      return Select(BroadcastTo(cond, lanes, is_scalable),
                    BroadcastTo(t, lanes, is_scalable),
                    BroadcastTo(f, lanes, is_scalable));
    }
  }

  PrimExpr VisitExpr_(const CastNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      if (value.dtype().is_scalable_vector()) {
        return Cast(op->dtype.with_scalable_vscale_factor(
                        value.dtype().vscale_factor()),
                    value);
      } else {
        return Cast(op->dtype.with_lanes(value.dtype().lanes()), value);
      }
    }
  }

  PrimExpr VisitExpr_(const FloatImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }

  PrimExpr VisitExpr_(const IntImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }

  PrimExpr VisitExpr_(const StringImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }

  // Variable
  PrimExpr VisitExpr_(const VarNode *op) final {
    Var var = GetRef<Var>(op);

    if (var.same_as(var_)) {
      return ramp_;
    }
    auto it = let_binding_.find(var);
    if (it != let_binding_.end()) {
      return it->second;
    } else {
      return std::move(var);
    }
  }
  // IfThenElse expr
  PrimExpr MutateIfThenElseExpr_(const CallNode *op) {
    PrimExpr cond = this->VisitExpr(op->args[0]);
    if (cond.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    PrimExpr t = this->VisitExpr(op->args[1]);
    PrimExpr f = this->VisitExpr(op->args[2]);
    if (cond.same_as(op->args[0]) && t.same_as(op->args[1]) &&
        f.same_as(op->args[2])) {
      return GetRef<PrimExpr>(op);
    } else {
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(t_lanes, f_lanes);
      bool is_scalable =
          t.dtype().is_scalable_vector() || f.dtype().is_scalable_vector();
      t = BroadcastTo(t, lanes, is_scalable);
      f = BroadcastTo(f, lanes, is_scalable);
      if (is_scalable) {
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {cond, t, f});
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {cond, t, f});
      }
    }
  }
  // Reinterpret expr
  PrimExpr MutateReinterpretExpr_(const CallNode *op) {
    ICHECK(op->op.same_as(builtin::reinterpret()));
    PrimExpr value = this->VisitExpr(op->args[0]);
    if (value.same_as(op->args[0])) {
      return GetRef<PrimExpr>(op);
    } else {
      int lanes = value.dtype().get_lanes_or_vscale_factor();
      if (value.dtype().is_scalable_vector()) {
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {value});
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {value});
      }
    }
  }
  // Call
  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(builtin::if_then_else())) {
      return MutateIfThenElseExpr_(op);
    } else if (op->op.same_as(builtin::texture2d_load())) {
      int lane = 0;
      Array<PrimExpr> fcd = MutateArray({op->args.back()}, &lane);
      auto new_args = op->args;
      new_args.pop_back();
      new_args.push_back(fcd[0]);
      return Call(op->dtype.with_lanes(4), op->op, new_args);
    } else if (op->op.same_as(builtin::texture2d_store())) {
      int lane = 0;
      // Vectorize the value to store
      Array<PrimExpr> value{op->args.back()};
      Array<PrimExpr> mutated_value = MutateArray(value, &lane);
      Array<PrimExpr> new_args{op->args[0], op->args[1], op->args[2],
                               mutated_value[0]};
      return Call(op->dtype.with_lanes(lane), op->op, new_args);
    } else if (op->op.same_as(builtin::reinterpret())) {
      return MutateReinterpretExpr_(op);
    }
    auto optional_op = op->op.as<Op>();
    bool vectorizable = optional_op &&
                        op_vectorizable_.get(optional_op.value(), false) &&
                        !op->dtype.is_scalable_vector();

    if (!vectorizable) {
      // Cannot vectorize this op
      Array<PrimExpr> new_args;
      for (auto arg : op->args) {
        auto new_arg = this->VisitExpr(arg);
        if (new_arg.dtype().is_scalable_or_fixed_length_vector()) {
          need_scalarize_ = true;
          return GetRef<PrimExpr>(op);
        }
        new_args.push_back(new_arg);
      }
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype, op->op, new_args);
      }
    } else {
      int lane = 0;
      Array<PrimExpr> new_args = MutateArray(op->args, &lane);
      // normal code path.
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype.with_lanes(lane), op->op, new_args);
      }
    }
  }
  // BufferLoad
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto load = GetRef<BufferLoad>(op);

    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    if (!indices.same_as(op->indices)) {
      BufferLoadNode *writer = load.CopyOnWrite();
      writer->indices = indices;
      // writer->LegalizeDType();
      LegalizeBufferLoadDType(writer);
    }

    return std::move(load);
  }
  // Let
  PrimExpr VisitExpr_(const LetNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    // Weaker SSA condition
    // A single var can be binded in multiple lets
    // but they have to bind to the same value.
    // This is used to allow cases when we reuse a single let
    // expression to construct a nested expr.
    // (let x = 1 in x + 1) * (let x = 1 in x + 1)
    auto it = let_binding_.find(op->var);
    if (it != let_binding_.end()) {
      ICHECK(deep_equal_(it->second, value))
          << "Let cannot bind the same var to two different values";
    }
    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return Let(new_var, value, this->VisitExpr(op->body));
    } else {
      let_binding_[op->var] = op->var;
      PrimExpr body = this->VisitExpr(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Let(op->var, value, body);
      }
    }
  }
  // BufferStore
  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto store = GetRef<BufferStore>(op);

    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    PrimExpr value = this->VisitExpr(op->value);

    if (!indices.same_as(op->indices) || !value.same_as(op->value)) {
      ICHECK(!op->buffer->dtype.is_scalable_vector())
          << "Vectorizing over scalable buffer elements is not supported in "
             "vectorizer.";
      // How many lanes of indexing are present in the index and
      // buffer element type, excluding the last index.
      int other_index_lanes = op->buffer->dtype.lanes();
      for (size_t i = 0; i < indices.size() - 1; i++) {
        other_index_lanes *= indices[i].dtype().lanes();
        // Only allow the last index to be scalable
        ICHECK(!indices[i].dtype().is_scalable_vector())
            << "Only the last index can be scalable.";
      }

      // The total number of lanes of indexing, including the last index.
      auto last_index_dtype = indices[indices.size() - 1].dtype();
      int lanes_in_last_index = last_index_dtype.get_lanes_or_vscale_factor();
      int index_lanes = other_index_lanes * lanes_in_last_index;

      // The total number of lanes in this store operation.  Either
      // the index or the value will be broadcast out to this number
      // of lanes, depending on which has more lanes.
      int value_dtype_lanes = value.dtype().get_lanes_or_vscale_factor();
      bool is_last_index_scalable = last_index_dtype.is_scalable_vector();
      int total_lanes = std::max(index_lanes, value_dtype_lanes);

      ICHECK_EQ(total_lanes % other_index_lanes, 0)
          << "When storing to buffer " << op->buffer->name
          << ", cannot produce " << total_lanes
          << " lanes of storage location by changing the last index.";
      int last_index_lanes = total_lanes / other_index_lanes;

      // Broadcast the last index such that the total number of index
      // lanes matches the desired number.
      indices.Set(indices.size() - 1,
                  BroadcastTo(indices[indices.size() - 1], last_index_lanes,
                              is_last_index_scalable));

      auto writer = store.CopyOnWrite();
      writer->indices = indices;
      writer->value = BroadcastTo(value, total_lanes, is_last_index_scalable);
    }

    return std::move(store);
  }
  // For
  Stmt VisitStmt_(const ForNode *op) final {
    if (op->kind == ForKind::kVectorized) {
      LOG(WARNING) << "Detect vectorize inside vectorized loop, ignoring...";
    }
    ICHECK(is_zero(op->min));
    ICHECK(!op->extent.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr extent = this->VisitExpr(op->extent);
    if (extent.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt body = this->VisitStmt(op->body);
    if (extent.same_as(op->extent) && body.same_as(op->body)) {
      return GetRef<Stmt>(op);
    } else {
      return For(op->loop_var, op->min, extent, op->kind, body,
                 op->thread_binding, op->annotations);
    }
  }
  // IfThenElse
  Stmt VisitStmt_(const IfThenElseNode *op) final {
    ICHECK(!op->condition.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt then_case = this->VisitStmt(op->then_case);
    Optional<Stmt> else_case = std::nullopt;
    if (op->else_case) {
      else_case = this->VisitStmt(op->else_case.value());
    }
    if (condition.same_as(op->condition) && then_case.same_as(op->then_case) &&
        else_case.same_as(op->else_case)) {
      return GetRef<Stmt>(op);
    } else {
      return IfThenElse(condition, then_case, else_case);
    }
  }
  // While
  Stmt VisitStmt_(const WhileNode *op) final {
    LOG(FATAL) << "A while loop inside a vectorized loop not supported.";
  }
  // LetStmt
  Stmt VisitStmt_(const LetStmtNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    ICHECK(!let_binding_.count(op->var))
        << "SSA violation, a single var is binded twice";
    let_binding_[op->var] = value;

    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return LetStmt(new_var, value, this->VisitStmt(op->body));
    } else {
      let_binding_[op->var] = op->var;
      Stmt body = this->VisitStmt(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<Stmt>(op);
      } else {
        return LetStmt(op->var, value, body);
      }
    }
  }

  // Allocate
  Stmt VisitStmt_(const AllocateNode *op) final {
    // Mutate the condition
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
      LOG(WARNING) << "Cannot handle vector extent in alloc of "
                   << op->buffer_var->name_hint;
      return Scalarize(GetRef<Stmt>(op));
    }

    return StmtMutator::VisitStmt_(op);
  }

  // scalarize the statement
  Stmt Scalarize(Stmt stmt) {
    Var idx(var_->name_hint + ".s", var_->dtype);
    stmt = Substitute(stmt, {{var_, idx}});
    return For(idx, IntImm(var_->dtype, 0), var_lanes_, ForKind::kSerial, stmt);
  }

private:
  // analyzer
  arith::Analyzer analyzer_;
  // deep equal
  ExprDeepEqual deep_equal_;
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // ramp representing the var.
  PrimExpr ramp_;
  // flag to mark requirement of scalarization.
  bool need_scalarize_{false};
  // Let binding
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual> let_binding_;
  // vectorizable property
  OpAttrMap<TVectorizable> op_vectorizable_ =
      Op::GetAttrMap<TVectorizable>("TVectorizable");

  // mutate array, with given lane requirement
  // when finished, p_lane updates the lane requirement.
  Array<PrimExpr> MutateArray(Array<PrimExpr> arr, int *p_lanes) {
    if (arr.empty())
      return arr;
    int &lanes = *p_lanes;
    bool changed = false;
    std::vector<PrimExpr> new_arr(arr.size());
    for (size_t i = 0; i < arr.size(); i++) {
      PrimExpr old_elem = arr[i];
      PrimExpr new_elem = this->VisitExpr(old_elem);
      if (!new_elem.same_as(old_elem))
        changed = true;
      new_arr[i] = new_elem;
      lanes = std::max(lanes, new_elem.dtype().lanes());
    }

    for (size_t i = 0; i < arr.size(); ++i) {
      if (new_arr[i].dtype().lanes() != lanes) {
        new_arr[i] = BroadcastTo(new_arr[i], lanes, false);
        changed = true;
      }
    }
    if (!changed)
      return arr;
    return Array<PrimExpr>(new_arr);
  }
  template <typename TOp, typename T> PrimExpr BinaryVec(const T *op) {
    static_assert(std::is_same<typename TOp::ContainerType, T>::value,
                  "constraint");
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return TOp(BroadcastTo(a, lanes, is_scalable),
                 BroadcastTo(b, lanes, is_scalable));
    }
  }
  template <typename T, typename FCompute>
  PrimExpr AddSubVec(const T *op, FCompute fcompute) {
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
      if (lanes != 1) {
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
        if (a.dtype().is_scalar() && b_ramp) {
          return Ramp(
              fcompute(a, b_ramp->base),
              fcompute(make_zero(b_ramp->stride.dtype()), b_ramp->stride),
              b_ramp->lanes);
        }
        if (b.dtype().is_scalar() && a_ramp) {
          return Ramp(fcompute(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
        }
      }
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return fcompute(BroadcastTo(a, lanes, is_scalable),
                      BroadcastTo(b, lanes, is_scalable));
    }
  }
};

inline bool TargetHasSVE() {
  return Target::Current()->GetFeature<Bool>("has_sve").value_or(false);
}

class LoopVectorizer : public StmtMutator {
public:
  Stmt VisitStmt_(const ForNode *op) final {
    if (op->kind == ForKind::kVectorized) {
      auto *extent_as_int = op->extent.as<IntImmNode>();

      if (!extent_as_int || extent_as_int->value < 1) {
        bool is_scalable_expr =
            CheckContains::ExprContains(op->extent, arith::IsVScaleCall);
        ICHECK(is_scalable_expr && TargetHasSVE())
            << "Failed to vectorize loop with extent " << op->extent
            << " for target " << Target::Current();
      }
      ICHECK(is_zero(op->min));
      return TLVectorizer(op->loop_var, op->extent)(op->body);
    } else {
      return StmtMutator::VisitStmt_(op);
    }
  }
};

class VectorizeSkipper : public StmtMutator {
public:
  Stmt VisitStmt_(const ForNode *op) final {
    Stmt stmt = StmtMutator::VisitStmt_(op);
    op = stmt.as<ForNode>();
    if (op->kind == ForKind::kVectorized) {
      return For(op->loop_var, op->min, op->extent, ForKind::kSerial, op->body);
    } else {
      return stmt;
    }
  }
};

Stmt SkipVectorize(Stmt stmt) { return VectorizeSkipper()(std::move(stmt)); }

tvm::transform::Pass VectorizeLoop(bool enable_vectorize = true) {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
    auto *n = f.CopyOnWrite();
    if (enable_vectorize) {
      n->body = tvm::tl::LoopVectorizer()(std::move(n->body));
    } else {
      n->body = tvm::tl::VectorizeSkipper()(std::move(n->body));
    }
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.VectorizeLoop", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.VectorizeLoop", VectorizeLoop);
});

} // namespace tl
} // namespace tvm