storage_access.cc 15.5 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file storage_access.cc
 */
#include "storage_access.h"

#include <tvm/arith/analyzer.h>
#include <tvm/target/target_info.h>
#include <tvm/tir/op.h>

#include <string>
#include <utility>

#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

void TileLangStorageAccessVisitor::VisitExpr_(const BufferLoadNode *op) {
  Var buf = op->buffer->data;
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
    ICHECK(allow_append_) << GetRef<BufferLoad>(op) << " " << scope.to_string();
    AccessEntry e;
    e.threads = env_threads();
    e.thread_range = this->ComputeThreadRange(e.threads);
    e.buffer = buf;
    e.buffer_indices = op->indices;
    e.dtype = op->dtype.element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kRead;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
  IRVisitorWithAnalyzer::VisitExpr_(op);
}

void TileLangStorageAccessVisitor::VisitStmt_(const BufferStoreNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;

  Var buf = op->buffer->data;
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
    AccessEntry e;
    e.threads = env_threads();
    e.thread_range = this->ComputeThreadRange(e.threads);
    e.buffer = buf;
    e.buffer_indices = op->indices;
    e.dtype = op->value.dtype().element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kWrite;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
  IRVisitorWithAnalyzer::VisitStmt_(op);
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const EvaluateNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
  IRVisitorWithAnalyzer::VisitStmt_(op);
  // push to the scope
  if (!curr_stmt_.access.empty()) {
    scope_.back().push_back(curr_stmt_);
    curr_stmt_.access.clear();
  }
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const LetStmtNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
  this->VisitExpr(op->value);
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
  // traverse body block
  this->VisitStmt(op->body);
}

void TileLangStorageAccessVisitor::VisitStmt_(const BlockNode *op) {
  auto block = Downcast<Block>(op);
  for (const auto &buffer : block->alloc_buffers) {
    ICHECK(buffer->IsInstance<BufferNode>());
    buffer_data_to_buffer_.Set(buffer->data, buffer);
  }
  IRVisitorWithAnalyzer::VisitStmt_(op);
}

void TileLangStorageAccessVisitor::VisitStmt_(const AttrStmtNode *op) {
  if (op->attr_key == tvm::tir::attr::double_buffer_write) {
    ICHECK(double_buffer_write_ == nullptr);
    double_buffer_write_ = op->node.as<VarNode>();
    scope_.push_back(std::vector<StmtEntry>());
    IRVisitorWithAnalyzer::VisitStmt_(op);
    StmtEntry s;
    s.stmt = op;
    s.access = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    if (!s.access.empty()) {
      for (AccessEntry &e : s.access) {
        if (e.type == kWrite && e.buffer.get() == double_buffer_write_) {
          e.double_buffer_write = true;
        }
      }
      scope_.back().emplace_back(std::move(s));
    }
    double_buffer_write_ = nullptr;
  } else if (op->attr_key == tvm::tir::attr::coproc_scope) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
    IRVisitorWithAnalyzer::VisitStmt_(op);
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::thread_extent) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
    ICHECK_NE(iv->thread_tag.length(), 0U);
    analyzer_.Bind(
        iv->var, Range::FromMinExtent(IntImm(op->value->dtype, 0), op->value));

    if (!in_device_env_) {
      in_device_env_ = true;
      scope_.push_back(std::vector<StmtEntry>());
      IRVisitorWithAnalyzer::VisitStmt_(op);
      // no need to take the result as the thread barrier automatically syncs.
      Summarize(std::move(scope_.back()), nullptr);
      in_device_env_ = false;
      scope_.pop_back();
    } else {
      IRVisitorWithAnalyzer::VisitStmt_(op);
    }
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::hand_threaded) {
    // skip this pass on blocks that were hand_threaded
    // this avoids control flow and read/write conflicts
    // between hand-threaded kernels and automatic threading
  } else {
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const ForNode *op) {
  scope_.push_back(std::vector<StmtEntry>());
  IRVisitorWithAnalyzer::VisitStmt_(op);
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), op);
  scope_.pop_back();
  if (!s.access.empty()) {
    // relax the touched set to contain all ranges in the loop.
    std::unordered_map<const VarNode *, arith::IntSet> relax_map;
    relax_map[op->loop_var.get()] =
        arith::IntSet::FromRange(Range::FromMinExtent(op->min, op->extent));
    for (AccessEntry &e : s.access) {
      if (e.buffer.defined()) {
        ICHECK(!e.touched.empty());
        Array<arith::IntSet> new_touched;
        for (const auto &touched : e.touched) {
          new_touched.push_back(arith::EvalSet(touched, relax_map));
        }
        e.touched = std::move(new_touched);
      }
    }
  }
  if (!s.access.empty()) {
    scope_.back().emplace_back(std::move(s));
  }
}

bool IsThreadInvariant(const PrimExpr &cond) {
  if (auto call = cond.as<CallNode>()) {
    if (auto opt_call_op = call->op.as<Op>()) {
      const auto &call_op = opt_call_op.value();
      if (call_op.same_as(builtin::tvm_thread_invariant())) {
        return true;
      }
    }
  }
  return false;
}

/**
 * @brief Visit an IfThenElse statement and collect storage access summaries for
 * its branches.
 *
 * Visits the if-then-else node's condition and both branches to summarize
 * buffer reads, writes, and synchronization events under the condition's
 * constraints. If the condition is not thread-invariant, increments an internal
 * condition counter for the duration of processing.
 *
 * Behavior and side effects:
 * - Evaluates the condition expression (using ExtractRealCondition) and applies
 * it as a constraint while summarizing the then-branch.
 * - For the else-branch (when present), applies the negated,
 * analyzer-simplified condition
 *   (analyzer_.rewrite_simplify(Not(real_condition))) as the constraint.
 * - Accumulates summarized StmtEntry access information for the then/else
 * branches and appends a combined StmtEntry for the IfThenElseNode into the
 * current scope.
 * - Temporarily toggles allow_append_ and clears curr_stmt_.access during
 * condition evaluation and branch summarization.
 * - Modifies internal state: scope_ (push/pop of temporary branch scopes),
 * curr_stmt_.access, and condition_counter_ (incremented/decremented when the
 * condition is not thread-invariant).
 */
void TileLangStorageAccessVisitor::VisitStmt_(const IfThenElseNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }

  allow_append_ = true;
  this->VisitExpr(op->condition);
  PrimExpr real_condition = ExtractRealCondition(op->condition);

  curr_stmt_.access.clear();
  allow_append_ = false;

  scope_.push_back(std::vector<StmtEntry>());
  {
    With<arith::ConstraintContext> constraint(&analyzer_, real_condition);
    this->VisitStmt(op->then_case);
  }

  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  if (op->else_case) {
    scope_.push_back(std::vector<StmtEntry>());
    {
      With<arith::ConstraintContext> constraint(
          &analyzer_, analyzer_.rewrite_simplify(Not(real_condition)));
      this->VisitStmt(op->else_case.value());
    }
    auto v = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    s.access.insert(s.access.end(), v.begin(), v.end());
  }
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const WhileNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }
  this->VisitExpr(op->condition);
  scope_.push_back(std::vector<StmtEntry>());
  this->VisitStmt(op->body);
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitExpr_(const CallNode *op) {
  if (op->op.same_as(builtin::address_of())) {
    ICHECK_EQ(op->args.size(), 1U);
    if (auto load = op->args[0].as<BufferLoadNode>()) {
      Buffer buffer = load->buffer;
      DataType dtype = buffer->dtype;
      const VarNode *buffer_var = buffer->data.as<VarNode>();
      buffer_data_to_buffer_.Set(GetRef<Var>(buffer_var), buffer);
      StorageScope scope = GetScope(GetRef<Var>(buffer_var));
      Array<Range> buffer_ranges;
      // from indices to buffer indices
      ICHECK(buffer->shape.size() == load->indices.size());
      // Use buffer shape and indices to compute the buffer_ranges for each
      // dimension.
      for (size_t i = 0; i < buffer->shape.size(); ++i) {
        PrimExpr min = load->indices[i];
        PrimExpr extent = make_const(buffer->shape[i].dtype(), 1);
        buffer_ranges.push_back(Range::FromMinExtent(min, extent));
      }
      if (Enabled(buffer_var, scope)) {
        ICHECK(allow_append_);
        AccessEntry e;
        e.threads = env_threads();
        e.thread_range = this->ComputeThreadRange(e.threads);
        e.dtype = dtype;
        e.buffer = Downcast<Var>(buffer->data);
        e.buffer_ranges = buffer_ranges;
        for (const auto &index : load->indices) {
          e.touched.push_back(arith::IntSet::Vector(index));
        }
        e.is_pointer_access = true;
        e.type = kRead;
        e.scope = scope;
        curr_stmt_.access.emplace_back(e);
      }
      IRVisitorWithAnalyzer::VisitExpr_(load);
    } else {
      IRVisitorWithAnalyzer::VisitExpr_(op);
    }
  } else if (op->op.same_as(builtin::tvm_access_ptr())) {
    ICHECK_EQ(op->args.size(), 5U);
    DataType dtype = op->args[0].dtype();
    const VarNode *buffer_var = op->args[1].as<VarNode>();
    PrimExpr offset = op->args[2];
    PrimExpr extent = op->args[3];
    const IntImmNode *flag = op->args[4].as<IntImmNode>();
    StorageScope scope = GetScope(GetRef<Var>(buffer_var));
    // The buffer scope.
    if (Enabled(buffer_var, scope)) {
      ICHECK(allow_append_);
      Array<Range> buffer_ranges;
      if (buffer_data_to_buffer_.find(GetRef<Var>(buffer_var)) ==
          buffer_data_to_buffer_.end()) {
        // cannot find buffer map, use the default buffer
        buffer_ranges = {Range::FromMinExtent(offset, extent)};
      } else {
        Buffer buffer = buffer_data_to_buffer_.at(GetRef<Var>(buffer_var));
        auto buffer_shape = buffer->shape;
        // convert 1d offset to multi-dimensional index
        auto linear_to_indices = [this](PrimExpr offset,
                                        const Array<PrimExpr> &shape) {
          Array<PrimExpr> indices;
          PrimExpr remaining = std::move(offset);
          for (size_t i = 0; i < shape.size(); ++i) {
            PrimExpr stride = make_const(DataType::Int(32), 1);
            for (size_t j = i + 1; j < shape.size(); ++j) {
              stride = stride * shape[j];
            }
            PrimExpr idx = FloorDiv(remaining, stride);
            remaining = FloorMod(remaining, stride);
            indices.push_back(analyzer_.Simplify(idx));
          }
          return indices;
        };
        Array<PrimExpr> start_indices = linear_to_indices(offset, buffer_shape);
        Array<PrimExpr> end_indices =
            linear_to_indices(offset + extent, buffer_shape);
        for (size_t i = 0; i < buffer_shape.size(); ++i) {
          buffer_ranges.push_back(Range::FromMinExtent(
              start_indices[i],
              analyzer_.Simplify(end_indices[i] - start_indices[i])));
        }
      }
      AccessEntry e;
      e.threads = env_threads();
      e.thread_range = this->ComputeThreadRange(e.threads);
      e.dtype = dtype;
      e.buffer = GetRef<Var>(buffer_var);
      e.buffer_ranges = buffer_ranges;
      e.is_pointer_access = true;
      e.touched = {
          arith::IntSet::FromRange(Range::FromMinExtent(offset, extent))};
      e.scope = scope;
      if (flag->value & 1) {
        e.type = kRead;
        curr_stmt_.access.emplace_back(e);
      }
      if (flag->value & 2) {
        e.type = kWrite;
        curr_stmt_.access.emplace_back(e);
      }
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  } else if (op->op.same_as(builtin::tvm_storage_sync())) {
    ICHECK(allow_append_);
    const std::string &s = op->args[0].as<StringImmNode>()->value;
    if (s != "warp") {
      StorageScope scope = StorageScope::Create(s);
      AccessEntry e;
      e.threads = env_threads();
      e.thread_range = this->ComputeThreadRange(e.threads);
      e.type = kSync;
      e.scope = StorageScope::Create(s);
      curr_stmt_.access.emplace_back(std::move(e));
    }
  } else {
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }
}

Map<Var, Range> TileLangStorageAccessVisitor::ComputeThreadRange(
    const Array<IterVar> &threads) {
  Map<Var, Range> thread_range;
  for (const auto &th : threads) {
    auto thread_tag = th->thread_tag;
    if (thread_tag == "threadIdx.x" || thread_tag == "threadIdx.y" ||
        thread_tag == "threadIdx.z") {
      auto const_int_bound = analyzer_.const_int_bound(th->var);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
      auto extent = max_value - min_value + 1;
      auto dtype = th->var.dtype();
      thread_range.Set(th->var, Range::FromMinExtent(IntImm(dtype, min_value),
                                                     IntImm(dtype, extent)));
    }
  }
  return thread_range;
}

StorageScope
TileLangStorageAccessVisitor::GetScope(const Var &buffer_var) const {
  if (buffer_var->type_annotation.as<PointerTypeNode>()) {
    return StorageScope::Create(GetPtrStorageScope(buffer_var));
  }
  return StorageScope(); // global by default
}

} // namespace tl
} // namespace tvm