make_packed_api.cc 18.2 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file make_packed_api.cc Lower PrimFunc to use the packed function API.
 */
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
#include <tvm/runtime/device_api.h>
#include <tvm/runtime/module.h>
#include <tvm/target/target.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/buffer.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "arg_binder.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {
using namespace tir;
static constexpr const char *kDeviceContextVar = "device_api_context";

namespace {
class ReturnRewriter : public StmtMutator {
public:
  explicit ReturnRewriter(Var ret_var, Var ret_tcode)
      : ret_var_(std::move(ret_var)), ret_tcode_(std::move(ret_tcode)) {}

  Stmt VisitStmt_(const ForNode *node) override {
    if (node->kind == ForKind::kParallel)
      in_parallel_ += 1;
    Stmt ret = StmtMutator::VisitStmt_(node);
    if (node->kind == ForKind::kParallel)
      in_parallel_ -= 1;
    return ret;
  }

  Stmt VisitStmt_(const EvaluateNode *node) override {
    Stmt ret = StmtMutator::VisitStmt_(node);
    const EvaluateNode *eval = ret.as<EvaluateNode>();
    ICHECK(eval);
    if (const CallNode *call = eval->value.as<CallNode>()) {
      if (call->op.same_as(builtin::ret())) {
        ICHECK_EQ(in_parallel_, 0)
            << "tir.ret cannot be used in parallel scope.";
        ICHECK_EQ(call->args.size(), 1) << "tir.ret expect a single argument.";
        ret = WriteToOut(call->args[0]);
      }
    }
    return ret;
  }

private:
  struct ConvertedInfo {
    int type_index{-1};
    PrimExpr expr;
    Buffer dummy_val_buffer;
    Buffer dummy_tcode_buffer;
  };

  ConvertedInfo ConvertForFFI(const PrimExpr &val) {
    ConvertedInfo info;

    // convert val's data type to FFI data type, return type code
    DataType dtype = val.dtype();
    if (dtype.is_int() || dtype.is_uint()) {
      info.type_index = ffi::TypeIndex::kTVMFFIInt;
      info.expr = Cast(DataType::Int(64), val);
    } else if (dtype.is_float()) {
      info.type_index = ffi::TypeIndex::kTVMFFIFloat;
      info.expr = Cast(DataType::Float(64), val);
    } else if (dtype.is_void()) {
      info.type_index = ffi::TypeIndex::kTVMFFINone;
      info.expr = val;
    } else {
      LOG(FATAL) << "data type " << dtype << " not supported yet";
    }

    // If multiple return locations have the same data type, use the
    // same dummy buffer declaration.
    auto it = dummy_val_buffer_map_.find(info.type_index);
    if (it != dummy_val_buffer_map_.end()) {
      info.dummy_val_buffer = it->second;
    } else {
      info.dummy_val_buffer =
          Buffer(ret_var_, info.expr.dtype(), {1}, {1}, ConstInt32(0),
                 ret_var_->name_hint, 0, 0, kDefault);
      dummy_val_buffer_map_[info.type_index] = info.dummy_val_buffer;
    }

    // The type_index is always a 32-bit int, so we don't need to have a
    // separate map.
    if (!dummy_tcode_buffer_.defined()) {
      dummy_tcode_buffer_ =
          Buffer(ret_tcode_, DataType::Int(32), {1}, {1}, ConstInt32(0),
                 ret_tcode_->name_hint, 0, 0, kDefault);
    }
    info.dummy_tcode_buffer = dummy_tcode_buffer_;

    return info;
  }

  Stmt WriteToOut(const PrimExpr &val) {
    auto info = ConvertForFFI(val);
    Stmt store_val = BufferStore(info.dummy_val_buffer, info.expr, {0});
    Stmt store_tcode =
        BufferStore(info.dummy_tcode_buffer, info.type_index, {0});
    Stmt ret_zero = Evaluate(tvm::ret(0));
    return SeqStmt({store_val, store_tcode, ret_zero});
  }

  Var ret_var_;
  Var ret_tcode_;
  int in_parallel_{0};

  std::unordered_map<int, Buffer> dummy_val_buffer_map_;
  Buffer dummy_tcode_buffer_;
};

Stmt RewriteReturn(Stmt body, Var ret_var, Var ret_tcode) {
  ReturnRewriter rewriter(std::move(ret_var), std::move(ret_tcode));
  return rewriter(std::move(body));
}

class SubroutineCallRewriter : public StmtExprMutator {
public:
  static Optional<Stmt> Apply(const Map<GlobalVar, String> &packed_func_methods,
                              Stmt stmt) {
    SubroutineCallRewriter rewriter(packed_func_methods);
    stmt = rewriter.VisitStmt(stmt);
    if (rewriter.made_change_) {
      return stmt;
    } else {
      return std::nullopt;
    }
  }

private:
  explicit SubroutineCallRewriter(
      const Map<GlobalVar, String> &packed_func_methods)
      : packed_func_methods(packed_func_methods) {}

  PrimExpr VisitExpr_(const CallNode *op) override {
    auto node = Downcast<Call>(StmtExprMutator::VisitExpr_(op));

    if (auto *gvar_ptr = node->op.as<GlobalVarNode>()) {
      auto gvar = GetRef<GlobalVar>(gvar_ptr);
      if (auto symbol = packed_func_methods.Get(gvar)) {
        Array<PrimExpr> cpacked_args;
        cpacked_args.push_back(tir::StringImm(symbol.value()));
        for (auto arg : node->args) {
          cpacked_args.push_back(arg);
        }

        // push an empty handle to be compatible with current cpacked convention
        cpacked_args.push_back(tir::make_zero(DataType::Handle()));
        made_change_ = true;
        return tir::Call(node->dtype, tir::builtin::tvm_call_cpacked(),
                         cpacked_args);
      }
    }

    return node;
  }
  const Map<GlobalVar, String> &packed_func_methods;
  bool made_change_{false};
};

} // namespace

inline Stmt MakeAssertEQ(PrimExpr lhs, PrimExpr rhs, const std::string &msg) {
  return AssertStmt(std::move(lhs) == std::move(rhs), tvm::tir::StringImm(msg),
                    Evaluate(0));
}

inline Stmt MakeAssertNotNull(PrimExpr ptr, const std::string &msg) {
  Call isnull(DataType::Bool(), builtin::isnullptr(), {std::move(ptr)});
  return AssertStmt(!isnull, tvm::tir::StringImm(msg), Evaluate(0));
}

/* \brief Return the global_symbol of the function, if it should be updated
 *
 * \param func The function to be inspected
 *
 * \returns The global_symbol to be used for the function at call
 * sites, or std::nullopt if the function is to remain unchanged.
 */
Optional<String> RequiresPackedAPI(const PrimFunc &func) {
  // A function with an explicit calling convention has already been
  // lowered, and should not be modified.
  if (auto opt = func->GetAttr<Integer>(tvm::attr::kCallingConv)) {
    if (CallingConv(opt.value()->value) != CallingConv::kDefault) {
      return std::nullopt;
    }
  }

  // Internal function calls do not need the PackedFunc API
  auto global_symbol = func->GetAttr<String>(tvm::attr::kGlobalSymbol);
  if (!global_symbol.defined()) {
    return std::nullopt;
  }

  return global_symbol;
}

PrimFunc MakePackedAPI(PrimFunc func) {
  auto global_symbol = RequiresPackedAPI(func);
  if (!global_symbol.defined()) {
    return func;
  }
  std::string name_hint = global_symbol.value();

  Target target = [&]() {
    auto opt = func->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(opt) << "MakePackedAPI required the function to be annotated with "
                   "tvm::attr::kTarget ("
                << tvm::attr::kTarget
                << "), but the function only has attributes " << func->attrs;
    return opt.value();
  }();
  int target_device_type = target->GetTargetDeviceType();

  // A function without a host target has already been lowered.
  Target target_host;
  if (auto opt = target->GetHost()) {
    target_host = opt.value();
  } else {
    return func;
  }

  auto *func_ptr = func.CopyOnWrite();
  const Stmt nop = Evaluate(0);
  int num_args = static_cast<int>(func_ptr->params.size());

  // Data field definitions
  // The packed fields
  Var v_packed_args("args", DataType::Handle());
  Buffer buf_packed_arg_type_ids =
      decl_buffer({IntImm(DataType::Int(32), func_ptr->params.size())},
                  DataType::Int(32), "arg_type_ids");
  Var v_num_packed_args("num_args", DataType::Int(32));
  Var v_out_ret_value("out_ret_value", PointerType(PrimType(DataType::Void())));
  Var v_out_ret_tcode("out_ret_tcode",
                      PointerType(PrimType(DataType::Int(32))));
  Var v_resource_handle("resource_handle", DataType::Handle());
  // The arguments of the function.

  // The device context
  Var device_id("dev_id");
  Integer device_type(target_device_type);
  // seq_init gives sequence of initialization
  // seq_check gives sequence of later checks after init
  std::vector<Stmt> seq_init, seq_check, arg_buffer_declarations;
  std::unordered_map<const VarNode *, PrimExpr> vmap;
  ArgBinder binder(&vmap);
  std::vector<Stmt> shape_checks;
  tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
  bool disable_dynamic_tail_split =
      ctxt->GetConfig<Bool>(kDisableDynamicTailSplit, Bool(true)).value();

  // ---------------------------
  // local function definitions
  // load i-th argument as type t
  auto f_arg_value = [&](DataType t, int i) {
    Array<PrimExpr> call_args{
        v_packed_args, IntImm(DataType::Int(32), i),
        IntImm(DataType::Int(32), builtin::kTVMValueContent)};
    // load 64 bit version
    DataType api_type = APIType(t);
    PrimExpr res = Call(api_type, builtin::tvm_struct_get(), call_args);
    // cast to the target version.
    if (api_type != t) {
      res = Cast(t, res);
    }
    return res;
  };

  // Find the device API context argument based on name
  for (const auto &param : func_ptr->params) {
    if (param->name_hint == kDeviceContextVar) {
      num_args--;
      v_resource_handle = param;
      break;
    }
  }

  // Assert correct type codes for each argument.  This must be done
  // *before* any initialization steps produced by
  // `binder.BindDLTensor()`.  The validity of those initialization
  // steps depends on the correct types being present, and must not
  // occur before the type codes are actually checked.
  seq_init.push_back(
      MakeAssertEQ(v_num_packed_args, num_args, [&]() -> std::string {
        std::ostringstream error_message;
        error_message << name_hint << ": num_args should be " << num_args;
        return error_message.str();
      }()));

  seq_init.push_back(MakeAssertNotNull(
      v_packed_args, name_hint + ": TVMValue* arg pointer was NULL"));
  seq_init.push_back(MakeAssertNotNull(
      buf_packed_arg_type_ids->data, name_hint + ": int* type_codes was NULL"));

  seq_init.emplace_back(DeclBuffer(buf_packed_arg_type_ids, nop));

  // Need to delay binding of the buffers, in case some arguments also
  // appear in the buffer.
  std::vector<std::pair<PrimExpr, Var>> var_def;
  std::vector<std::pair<Var, Buffer>> buffer_def;

  for (int i = 0; i < static_cast<int>(func_ptr->params.size()); ++i) {
    Var param = func_ptr->params[i];

    // Ignore the device context argument, as it will still be passed
    // as a native argument.
    if (param->name_hint == kDeviceContextVar) {
      continue;
    }

    var_def.emplace_back(f_arg_value(param.dtype(), i), param);
    if (func_ptr->buffer_map.count(param)) {
      buffer_def.emplace_back(param, func_ptr->buffer_map[param]);
    }

    // type code checks
    Var type_index(param->name_hint + ".code", DataType::Int(32));
    seq_init.emplace_back(LetStmt(
        type_index,
        BufferLoad(buf_packed_arg_type_ids, {IntImm(DataType::Int(32), i)}),
        nop));
    DataType t = param.dtype();
    if (t.is_handle()) {
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be pointer";
      seq_init.emplace_back(
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFINone ||
                         type_index == ffi::TypeIndex::kTVMFFIOpaquePtr ||
                         type_index == ffi::TypeIndex::kTVMFFIDLTensorPtr ||
                         type_index >= ffi::TypeIndex::kTVMFFIStaticObjectBegin,
                     tvm::tir::StringImm(msg.str()), nop));
    } else if (t.is_int() || t.is_uint()) {
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be int";
      seq_init.emplace_back(AssertStmt(type_index == kDLInt,
                                       tvm::tir::StringImm(msg.str()), nop));
    } else {
      ICHECK(t.is_float());
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be float";
      seq_init.emplace_back(AssertStmt(type_index == kDLFloat,
                                       tvm::tir::StringImm(msg.str()), nop));
    }
  }

  Array<Var> args{v_packed_args,     buf_packed_arg_type_ids->data,
                  v_num_packed_args, v_out_ret_value,
                  v_out_ret_tcode,   v_resource_handle};

  // Arg definitions are defined before buffer binding to avoid the use before
  // def errors.
  //
  // For example, for auto broadcasting, checks are required to guarantee that
  // either 0 or the original stride will be correctly used. Checks here have
  // to use the args that may have no let binding yet. Therefore, hoisting let
  // binding for args before buffer declaration is needed.
  for (const auto &[expr, param] : var_def) {
    binder.Bind(param, expr, name_hint + "." + param->name_hint, true);
  }

  for (const auto &kv : buffer_def) {
    binder.BindDLTensor(kv.second, device_type, device_id, kv.first,
                        name_hint + "." + kv.first->name_hint);
    arg_buffer_declarations.push_back(DeclBuffer(kv.second, nop));
  }

  func =
      WithAttrs(std::move(func),
                {{tvm::attr::kCallingConv, Integer(CallingConv::kCPackedFunc)},
                 {tvm::attr::kTarget, target_host}});
  Stmt body = RewriteReturn(func_ptr->body, v_out_ret_value, v_out_ret_tcode);
  body = AttrStmt(make_zero(DataType::Int(32)), tir::attr::compute_scope,
                  StringImm(name_hint + "_compute_"), body);
  // Set device context
  if (vmap.count(device_id.get())) {
    ObjectRef node = String("default");
    seq_check.push_back(AttrStmt(node, tir::attr::device_id, device_id, nop));
    seq_check.push_back(
        AttrStmt(node, tir::attr::device_type, device_type, nop));

    if (runtime::DeviceAPI::NeedSetDevice(target_device_type)) {
      Stmt set_device =
          Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(),
                        {StringImm(runtime::symbol::tvm_set_device),
                         device_type, device_id}));
      body = SeqStmt({set_device, body});
    }
  }

  // (zhengju) For dynamic constraint, we need to check the buffer shape and
  // dtype to make sure the buffer can be vectorized.
  for (const auto &kv : buffer_def) {
    if (disable_dynamic_tail_split) {
      Optional<Integer> opt_dynamic_alignment =
          ctxt->GetConfig(kDynamicAlignment, Optional<Integer>());
      int dynamic_alignment = opt_dynamic_alignment.value_or(Integer(8))->value;
      // The vectorize dimension will be the last dimension of the buffer
      auto vectorize_dim = kv.second->shape[kv.second->shape.size() - 1];
      auto shape_vectorize_expr = [&]() -> PrimExpr {
        PrimExpr result = IntImm(kv.second->DefaultIndexType(), 1);
        result = result * vectorize_dim;
        result = FloorMod(result, dynamic_alignment);
        return result;
      }();
      shape_checks.emplace_back(AssertStmt(
          shape_vectorize_expr == 0,
          tvm::tir::StringImm(
              kv.second->name +
              ": Vectorize dimension in buffer must be divisible by " +
              std::to_string(dynamic_alignment)),
          nop));
    }
  }

  // Return error code of zero on success
  body = SeqStmt({body, Evaluate(ret(Integer(0)))});

  if (!disable_dynamic_tail_split) {
    body = MergeNest({seq_init, binder.init_nest(), seq_check, binder.asserts(),
                      arg_buffer_declarations},
                     body);
  } else {
    body = MergeNest({seq_init, binder.init_nest(), seq_check, binder.asserts(),
                      arg_buffer_declarations, shape_checks},
                     body);
  }

  func_ptr->body = body;
  func_ptr->params = args;

  Array<Var> undefined = UndefinedVars(func_ptr->body, func_ptr->params);
  ICHECK_EQ(undefined.size(), 0)
      << "In PrimFunc " << name_hint << " variables " << undefined
      << " are used, but are not passed in as API arguments";

  func_ptr->buffer_map = Map<Var, Buffer>();
  func_ptr->ret_type = PrimType(DataType::Int(32)); // return the function.
  return func;
}

tvm::transform::Pass MakePackedAPI() {
  using tvm::transform::Pass;
  auto pass_func = [](IRModule mod, const tvm::transform::PassContext &ctx) {
    Map<GlobalVar, String> packed_func_methods;
    for (const auto &[gvar, base_func] : mod->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
        const auto &prim_func = opt.value();
        if (auto global_symbol = RequiresPackedAPI(prim_func)) {
          packed_func_methods.Set(gvar, global_symbol.value());
        }
      }
    }

    IRModuleNode *mptr = mod.CopyOnWrite();
    IRModule updates;

    for (const auto &[gvar, base_func] : mptr->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
        auto func = opt.value();
        auto orig_func = func;

        if (auto body = SubroutineCallRewriter::Apply(packed_func_methods,
                                                      func->body)) {
          func.CopyOnWrite()->body = body.value();
        }
        func = MakePackedAPI(std::move(func));

        if (!func.same_as(orig_func)) {
          updates->Add(gvar, func);
        }
      }
    }

    if (!updates->functions.empty()) {
      mod.CopyOnWrite()->Update(updates);
    }
    return mod;
  };

  return tvm::transform::CreateModulePass(pass_func, 0, "tl.MakePackedAPI", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.MakePackedAPI",
                        []() { return MakePackedAPI(); });
});

} // namespace tl
} // namespace tvm