lower_tile_op.cc 27.5 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/*!
 * \file lower_tile_op.cc
 * \brief Lower the tile op for further codegen.
 */

#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>
#include <unordered_map>

#include "../layout/layout.h"
#include "../layout/utils.h"
#include "../op/builtin.h"
#include "../op/gemm.h"
#include "../op/gemm_sp.h"
#include "../op/operator.h"

#include "arith/ir_mutator_with_analyzer.h"
#include "loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

static Buffer makeBufferWithLayout(const Buffer &buffer, const Layout &layout,
                                   Map<Var, Var> &var_remap) {
  const auto *ptr_type =
      TVM_TYPE_AS(buffer->data->type_annotation, PointerTypeNode);
  Type new_type;
  // convert fragments to normal local buffer
  if (ptr_type->storage_scope == "local.fragment") {
    new_type = PointerType(ptr_type->element_type, "local");
  } else {
    new_type = buffer->data->type_annotation;
  }
  Var new_var;
  if (ptr_type->storage_scope == "global") {
    new_var = buffer->data;
  } else {
    if (var_remap.count(buffer->data)) {
      new_var = var_remap[buffer->data];
    } else {
      new_var = Var(buffer->data->name_hint, new_type);
      var_remap.Set(buffer->data, new_var);
    }
  }
  Array<PrimExpr> layout_shape = layout->OutputShape();
  Array<PrimExpr> output_shape = layout_shape;

  if (ptr_type->storage_scope == "shared" ||
      ptr_type->storage_scope == "shared.dyn") {
    int replicate_extent = 1;
    Array<PrimExpr> buffer_shape = buffer->shape;
    int buffer_extent = 1;
    int layout_extent = 1;
    for (size_t i = 0; i < buffer_shape.size(); i++) {
      auto shape = buffer_shape[i].as<IntImmNode>();
      buffer_extent *= shape->value;
    }
    for (size_t i = 0; i < layout_shape.size(); i++) {
      auto shape = layout_shape[i].as<IntImmNode>();
      layout_extent *= shape->value;
    }
    replicate_extent = buffer_extent / layout_extent;
    if (replicate_extent > 1) {
      output_shape.insert(output_shape.begin(), replicate_extent);
    }
  }
  return Buffer(new_var, buffer->dtype, output_shape, {}, buffer->elem_offset,
                buffer->name, buffer->data_alignment, buffer->offset_factor,
                buffer->buffer_type);
}

// The function `makeBufferWithLayout` creates a new Buffer object based on the
// given buffer and layout. It handles remapping of buffer variables, adjusts
// the storage scope if needed (e.g., from "local.fragment" to "local"), and
// computes the output shape according to the layout. For shared memory buffers,
// it also handles replication if the buffer's extent is larger than the
// layout's extent.
class LayoutRemapRewriter : public arith::IRMutatorWithAnalyzer {
public:
  static Stmt Substitute(Stmt stmt, Map<Buffer, Layout> layout_remap) {
    arith::Analyzer analyzer;
    LayoutRemapRewriter substituter(&analyzer);
    substituter.layout_remap_ = std::move(layout_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    if (op->annotations.count(attr::kLayoutMap)) {
      block.CopyOnWrite()->annotations.Set(attr::kLayoutMap, layout_remap_);
    }
    return block;
  }

  Map<Buffer, Layout> layout_remap_;
};
class BufferGemmCollector : public StmtExprVisitor {
public:
  BufferGemmCollector() { Clear(); }

  void Clear() { buffer_var_gemm_.clear(); }

  void Collect(const Stmt &stmt) { VisitStmt(stmt); }

  Array<Var> GetBufferVarGemm() { return buffer_var_gemm_; }

private:
  void VisitStmt_(const EvaluateNode *op) {
    const CallNode *call_node = op->value.as<CallNode>();
    // Value of EvaluateNode may not be a call
    if (!call_node) {
      return;
    }
    auto call = Downcast<Call>(call_node);
    if (call->op.same_as(Gemm::Get())) {
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
    } else if (call->op.same_as(GemmSP::Get())) {
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
    }
  }

  Array<Var> buffer_var_gemm_;
};

/*!
 * \brief A class that rewrites buffer references in a statement based on a
 * given buffer remapping.
 *
 * This class is used to update buffer references in a statement after buffer
 * transformations have been applied. It specifically handles the remapping of
 * padding annotations.
 */
class RemapBufferRewriter : public arith::IRMutatorWithAnalyzer {
public:
  /*!
   * \brief Substitute buffer references in a statement based on a given buffer
   * remapping. \param stmt The statement to rewrite. \param buffer_remap A map
   * from old buffers to new buffers. \return The rewritten statement.
   */
  static Stmt Substitute(const Stmt &stmt, Map<Buffer, Buffer> buffer_remap) {
    arith::Analyzer analyzer;
    RemapBufferRewriter substituter(&analyzer);
    substituter.buffer_remap_ = std::move(buffer_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    if (op->annotations.count(attr::kSafeValueMap)) {
      return RewritePaddingMap(op);
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  /*!
   * \brief Rewrite the padding map annotation of a block.
   * \param op The block node to rewrite.
   * \return The rewritten block.
   */
  Stmt RewritePaddingMap(const BlockNode *op) {
    auto safe_value_map = op->annotations.Get(attr::kSafeValueMap);
    if (!safe_value_map) {
      LOG(FATAL) << "Padding map annotation is missing";
    }

    Map<Var, Var> var_remap = CreateVarRemap();
    Map<Var, PrimExpr> new_safe_value_map = RemapPaddingMap(
        Downcast<Map<Var, PrimExpr>>(safe_value_map.value()), var_remap);

    auto block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kSafeValueMap, new_safe_value_map);
    return block;
  }

  /*!
   * \brief Create a mapping from old variables to new variables based on buffer
   * remapping. \return A map from old variables to new variables.
   */
  Map<Var, Var> CreateVarRemap() const {
    Map<Var, Var> var_remap;
    for (const auto &[buffer, buffer_remap] : buffer_remap_) {
      var_remap.Set(buffer->data, buffer_remap->data);
    }
    return var_remap;
  }

  /*!
   * \brief Remap the padding map using the variable remapping.
   * \param safe_value_map The original padding map.
   * \param var_remap The variable remapping.
   * \return The remapped padding map.
   */
  Map<Var, PrimExpr> RemapPaddingMap(const Map<Var, PrimExpr> &safe_value_map,
                                     const Map<Var, Var> &var_remap) const {
    Map<Var, PrimExpr> new_safe_value_map;
    for (const auto &[var, padding] : safe_value_map) {
      if (var_remap.count(var)) {
        new_safe_value_map.Set(var_remap.at(var), padding);
      } else {
        new_safe_value_map.Set(var, padding);
      }
    }
    return new_safe_value_map;
  }

  Map<Buffer, Buffer> buffer_remap_;
};

class LowerTileOpPass : arith::IRMutatorWithAnalyzer {
public:
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    LowerTileOpPass substituter(&analyzer);
    // Trace the buffer map for tvm_access_ptr
    substituter.buffer_map_.insert(f->buffer_map.begin(), f->buffer_map.end());
    for (const auto &[_, buffer] : f->buffer_map) {
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerTileOpPass: Require the target attribute";
    substituter.target_ = target.value();
    // For TMA 1D, we should collect the buffers which are not used in GEMM and
    // do not need swizzle
    BufferGemmCollector collector;
    collector.Collect(f->body);
    substituter.buffer_var_gemm_ = collector.GetBufferVarGemm();
    PrimFuncNode *fptr = f.CopyOnWrite();
    fptr->body = substituter.VisitStmt(f->body);
    fptr->body =
        RemapBufferRewriter::Substitute(fptr->body, substituter.buffer_remap_);
    fptr->body =
        LayoutRemapRewriter::Substitute(fptr->body, substituter.layout_remap_);
    tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
    Optional<Bool> opt_disable_tma_lower =
        ctxt->GetConfig(kDisableTMALower, Optional<Bool>());

    if (!opt_disable_tma_lower.value_or(Bool(false))) {
      // @lei: this is a workaround, as if we don't disable tma lower,
      // cp async lowering won't be generated.
      ctxt->config.Set(kDisableTMALower, Bool(!substituter.has_tma_));
    }
    return f;
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : op->alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Map<Var, Layout> vmap;
    if (op->annotations.count(attr::kLayoutMap)) {
      auto layout_map = op->annotations.at(attr::kLayoutMap)
                            .as<Map<Buffer, Layout>>()
                            .value();
      for (auto [buffer, layout] : layout_map) {
        buffer_remap_.Set(buffer,
                          makeBufferWithLayout(buffer, layout, var_remap_));
        layout_map_.Set(buffer, layout);
      }
    }
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    for (size_t i = 0; i < block->alloc_buffers.size(); i++) {
      auto buffer = block->alloc_buffers[i];
      if (buffer_remap_.count(buffer)) {
        block_ptr->alloc_buffers.Set(i, buffer_remap_[buffer]);
      }
    }
    for (const auto &buffer : workspaces_)
      block_ptr->alloc_buffers.push_back(buffer);
    workspaces_.clear();
    return block;
  }

  int CheckAndGetBufferRowSize(const Buffer &buffer) {
    CHECK(buffer->shape.size() >= 2)
        << "The dimension of Buffer \"" << buffer->name << "\" with shape "
        << buffer->shape << " should be at least 2";

    auto dim = buffer->shape.size();
    auto buffer_row_size = buffer->shape[dim - 1].as<IntImmNode>()->value;
    return buffer_row_size;
  }

  struct AccessPtrResult {
    PrimExpr expr;
    bool rewritten{false};
  };

  AccessPtrResult
  HandleAccessPtrAndOffset(const PrimExpr &access_ptr,
                           const Optional<PrimExpr> &offset = std::nullopt,
                           DataType dtype = DataType::Int(32)) {
    AccessPtrResult result{access_ptr, false};
    // The 2th arg of T.tvm_access_ptr call is offset, we set it to 0 and
    // accumulate it to smem_offset
    CHECK(access_ptr->IsInstance<CallNode>())
        << "Invalid access ptr for permuted layout: " << access_ptr;
    auto access_ptr_call = Downcast<Call>(access_ptr);
    if (access_ptr_call->op.same_as(builtin::tvm_access_ptr())) {
      LOG(FATAL) << "Transformation for tvm_access_ptr is not implemented yet";
    } else if (access_ptr_call->op.same_as(builtin::address_of())) {
      Optional<PrimExpr> resolved = ResolveBufferLoad(access_ptr_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid access op for permuted layout: " << access_ptr;
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(access_ptr_call->args[0])) {
        auto node = access_ptr_call.CopyOnWrite();
        node->args.Set(0, load_expr);
        access_ptr_call = Call(access_ptr_call->dtype, access_ptr_call->op,
                               {load_expr}, access_ptr_call->span);
      }
      BufferLoad load = Downcast<BufferLoad>(access_ptr_call->args[0]);
      Array<PrimExpr> indices = load->indices;
      Array<PrimExpr> old_shape = load->buffer->shape;

      CHECK_EQ(indices.size(), old_shape.size())
          << "Indices size and shape size must match for general N-dimensional "
             "buffer "
          << "but got indices size: " << indices.size()
          << " and shape size: " << old_shape.size();

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;

      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
        elem_offset += indices[i] * stride;
        stride *= old_shape[i];
      }

      PrimExpr smem_offset =
          elem_offset + (offset.defined() ? offset.value() : 0);

      Buffer remap_key = FindRemapBuffer(load->buffer).value_or(load->buffer);
      Optional<Layout> layout = FindLayout(remap_key);
      if (!layout.defined() || !buffer_map_.count(remap_key->data)) {
        return result;
      }
      auto new_buffer = buffer_remap_.count(remap_key)
                            ? buffer_remap_[remap_key]
                            : load->buffer;
      auto new_shape = new_buffer->shape;

      auto buffer_map_iter = buffer_map_.find(Downcast<Var>(remap_key->data));

      int buffer_row_size = CheckAndGetBufferRowSize(buffer_map_iter->second);
      (void)buffer_row_size;

      // Convert offset to target-dimension, reindex it and convert it back
      Array<PrimExpr> multi_dim_indices;
      PrimExpr remaining_offset = smem_offset;

      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
        multi_dim_indices.insert(multi_dim_indices.begin(),
                                 floormod(remaining_offset, old_shape[i]));
        remaining_offset = floordiv(remaining_offset, old_shape[i]);
      }

      auto forward_indices = layout.value()->Forward(multi_dim_indices);
      PrimExpr new_offset = 0;
      PrimExpr stride_offset = 1;
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
        new_offset += forward_indices[i] * stride_offset;
        stride_offset *= new_shape[i];
      }
      new_offset = analyzer_->Simplify(new_offset);

      Array<PrimExpr> new_indices;
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
        new_indices.insert(new_indices.begin(),
                           floormod(new_offset, new_shape[i]));
        new_offset = floordiv(new_offset, new_shape[i]);
      }

      Array<PrimExpr> new_args = {BufferLoad(new_buffer, new_indices)};
      if (buffer_remap_.count(remap_key)) {
        layout_remap_.Set(new_buffer, layout.value());
      }
      result.rewritten = true;
      result.expr = Call(access_ptr_call->dtype, access_ptr_call->op, new_args,
                         access_ptr_call->span);
      return result;
    } else {
      LOG(FATAL) << "Invalid access op for permuted layout: " << access_ptr;
    }

    return result;
  }

  Optional<PrimExpr> ResolveBufferLoad(const PrimExpr &expr) const {
    if (expr->IsInstance<BufferLoadNode>()) {
      return expr;
    }
    if (const auto *var_node = expr.as<VarNode>()) {
      Var var = GetRef<Var>(var_node);
      auto it = let_bindings_.find(var);
      if (it != let_bindings_.end()) {
        return it->second;
      }
    }
    return Optional<PrimExpr>();
  }

  Optional<Buffer> FindRemapBuffer(const Buffer &buffer) const {
    if (buffer_remap_.count(buffer)) {
      return buffer;
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && buffer_remap_.count(it->second)) {
      return it->second;
    }
    for (const auto &kv : buffer_remap_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.first;
      }
      if (kv.first->name == buffer->name) {
        return kv.first;
      }
    }
    return Optional<Buffer>();
  }

  Optional<Layout> FindLayout(const Buffer &buffer) const {
    if (layout_map_.count(buffer)) {
      return layout_map_[buffer];
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && layout_map_.count(it->second)) {
      return layout_map_[it->second];
    }
    for (const auto &kv : layout_map_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.second;
      }
      if (kv.first->name == buffer->name) {
        return kv.second;
      }
    }
    return Optional<Layout>();
  }

  PrimExpr VisitExpr_(const tir::CallNode *op) final {
    if ((!has_tma_) && (op->op.same_as(tl::tma_load()) ||
                        op->op.same_as(tl::tma_load_im2col()) ||
                        op->op.same_as(tl::tma_store()))) {
      has_tma_ = true;
    }
    Array<RelaxExpr> ptx_instructions = {builtin::ptx_ldmatrix(),
                                         builtin::mma_store()};

    if (std::find(ptx_instructions.begin(), ptx_instructions.end(), op->op) ==
        ptx_instructions.end()) {
      auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
      return call;
    } else {
      is_ptx_ = true;
    }
    // Rewrite from/to shared or shared.dyn to/from local
    auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (call->op.same_as(builtin::ptx_ldmatrix())) {
      // form: T.ptx_ldmatrix(..., smem_ptr, smem_offset)
      // smem_ptr: T.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
      // or T.address_of(buffer, offset)
      PrimExpr access_ptr = call->args[5];
      PrimExpr smem_offset = call->args[6];
      Call address_of_call = Downcast<Call>(access_ptr);
      if (!address_of_call->op.same_as(builtin::address_of())) {
        LOG(FATAL) << "Invalid access ptr for permuted layout: " << access_ptr;
      }
      Optional<PrimExpr> resolved = ResolveBufferLoad(address_of_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid address_of argument for permuted layout: "
          << address_of_call->args[0];
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(address_of_call->args[0])) {
        auto call_node = call.CopyOnWrite();
        call_node->args.Set(5, Call(address_of_call->dtype, address_of_call->op,
                                    {load_expr}, address_of_call->span));
        address_of_call = Downcast<Call>(call->args[5]);
        access_ptr = call->args[5];
      }
      BufferLoad load = Downcast<BufferLoad>(address_of_call->args[0]);
      auto new_access_ptr =
          HandleAccessPtrAndOffset(access_ptr, smem_offset, call->dtype);
      if (new_access_ptr.rewritten) {
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(5, new_access_ptr.expr);
        new_call->args.Set(6, IntImm(smem_offset->dtype, 0));
      }
    } else if (call->op.same_as(builtin::mma_store())) {
      // because we will directly store result to Buffer instead of calling
      // mma_store now
      auto access_ptr = call->args[2];
      auto new_access_ptr =
          HandleAccessPtrAndOffset(access_ptr, std::nullopt, call->dtype);
      if (new_access_ptr.rewritten) {
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(2, new_access_ptr.expr);
      }
    } else {
      LOG(FATAL) << "Invalid call node: " << call;
    }
    is_ptx_ = false;
    return call;
  }

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto load = Downcast<BufferLoad>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (is_ptx_) {
      return load;
    }
    auto buffer = load->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];
      layout_remap_.Set(new_buffer, layout_map_[load->buffer]);
      return BufferLoad(new_buffer, new_indices);
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferLoad(new_buffer, load->indices);
    }
    return load;
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto store = Downcast<BufferStore>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto buffer = store->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      layout_remap_.Set(new_buffer, layout_map_[store->buffer]);
      return BufferStore(new_buffer, store->value, new_indices);
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferStore(new_buffer, store->value, store->indices);
    }
    return store;
  }

  PrimExpr VisitExpr_(const VarNode *op) final {
    auto var = Downcast<Var>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (buffer_data_to_buffer_.count(var)) {
      auto buffer = buffer_data_to_buffer_[var];
      if (buffer_remap_.count(buffer))
        return buffer_remap_[buffer]->data;
    }
    return var;
  }

  Stmt VisitStmt_(const LetStmtNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    bool recorded = false;
    if (value->IsInstance<BufferLoadNode>()) {
      let_bindings_[op->var] = value;
      recorded = true;
    }
    if (SideEffect(value) <= CallEffectKind::kPure) {
      analyzer_->Bind(op->var, value);
    }
    Stmt body = this->VisitStmt(op->body);
    if (recorded) {
      let_bindings_.erase(op->var);
    }
    if (value.same_as(op->value) && body.same_as(op->body)) {
      return GetRef<Stmt>(op);
    } else {
      auto n = this->CopyOnWrite(op);
      n->value = value;
      n->body = body;
      return Stmt(n);
    }
  }

  /**
   * @brief Handle an Evaluate node, lowering a detected tile operator to TIR.
   *
   * This visit implementation detects whether the Evaluate node represents a
   * tile operator invocation (via ParseOperator). If no tile operator is found
   * or the call targets a global function, the node is delegated to the base
   * visitor.
   *
   * When a tile operator is present, the method:
   * - Builds a workspace-allocation callback that creates a dynamic shared
   * buffer named "workspace" (storage scope "shared.dyn") and returns its write
   *   access pointer.
   * - Determines thread bounds for lowering from the analyzer's constant-int
   *   information for thread_var_; if unavailable, a default range [0,1) is
   * used.
   * - Invokes tile_op->Lower(...) with LowerArgs containing target, thread
   *   bounds, thread variable, the workspace callback, layout and buffer remap
   *   maps, and the list of GEMM-involved buffer vars; the analyzer is passed
   *   through for use during lowering.
   *
   * The lowered statement returned by the operator is then visited by the base
   * IRMutatorWithAnalyzer and that result is returned.
   *
   * @return Stmt The (possibly transformed) statement after lowering or base
   * visitor processing.
   */
  Stmt VisitStmt_(const EvaluateNode *op) final {
    const CallNode *call = op->value.as<CallNode>();
    // Do not analysis the call node to the global function.
    if (call && call->op.as<GlobalVarNode>())
      return Downcast<Evaluate>(IRMutatorWithAnalyzer::VisitStmt_(op));

    auto tile_op = ParseOperator(GetRef<Stmt>(op), buffer_data_to_buffer_);
    if (!tile_op.defined())
      return IRMutatorWithAnalyzer::VisitStmt_(op);
    AddWorkspaceCallback callback = [this](int num_elem, DataType dtype) {
      auto workspace =
          decl_buffer({PrimExpr(num_elem)}, dtype, "workspace", "shared.dyn");
      workspaces_.push_back(workspace);
      return workspace.access_ptr(2); // write
    };

    Range thread_bounds;

    if (analyzer_->const_int_bound.IsBound(thread_var_->var)) {
      auto const_int_bound = analyzer_->const_int_bound(thread_var_);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
      auto extent = max_value + 1 - min_value;
      thread_bounds =
          Range::FromMinExtent(IntImm(thread_var_->var.dtype(), min_value),
                               IntImm(thread_var_->var.dtype(), extent));
    } else {
      thread_bounds = Range::FromMinExtent(0, 1);
    }

    auto lowered = tile_op->Lower(
        LowerArgs{target_, thread_bounds, thread_var_->var, callback,
                  layout_map_, buffer_remap_, buffer_var_gemm_},
        analyzer_);
    return IRMutatorWithAnalyzer::VisitStmt(lowered);
  }

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_block_size_ = iv->dom->extent.as<IntImmNode>()->value;
      }
    }
    return arith::IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Target target_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Layout> layout_map_;
  Map<Buffer, Layout> layout_remap_;
  Map<Buffer, Buffer> buffer_remap_;
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
  size_t thread_block_size_ = 0;
  Array<Buffer> workspaces_;
  // For ptx Node, we need to remap the buffer and indices
  // By access CallNode instead of BufferLoad Node.
  bool is_ptx_{false};
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual>
      let_bindings_;
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
  Map<Var, Var> var_remap_;
  bool has_tma_{false};
  Array<Var> buffer_var_gemm_;
};

namespace transform {

using namespace tir::transform;

tvm::transform::Pass LowerTileOp() {
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
    return LowerTileOpPass::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerTileOp", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerTileOp", LowerTileOp);
});
} // namespace transform

} // namespace tl
} // namespace tvm