lower_shared_tmem.cc 11.3 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*!
 *  \file lower_shared_tmem.cc
 *  \brief Convert shared.tmem buffers to plain shared + ptx init, and do
 *         coordinate translation (from logical address to physical address)
 */
#include "../op/builtin.h"
#include "../target/utils.h"
#include "tvm/ir/type.h"
#include "tvm/tir/builtin.h"
#include "tvm/tir/expr.h"
#include "tvm/tir/stmt.h"
#include <tvm/arith/analyzer.h>
#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

namespace tvm {
namespace tl {

using namespace tir;

class SharedTmemRewriter : public StmtExprMutator {
public:
  static Stmt Rewrite(Stmt body) {
    SharedTmemRewriter rewriter;
    return rewriter(body);
  }

private:
  Stmt VisitStmt_(const BlockNode *op) final {
    Block block = GetRef<Block>(op);
    Array<Buffer> alloc_buffers = op->alloc_buffers;
    if (op->annotations.count(attr::kLayoutMap)) {
      auto layout_map = op->annotations.Get(attr::kLayoutMap);
      ICHECK(layout_map) << "layout map is not defined";
      layout_map_ = layout_map->as<Map<Buffer, Layout>>().value();
    }

    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }

    Array<Buffer> tmem_buffers;

    for (const auto &[data, buffer] : buffer_map_) {
      const auto *ptr_type =
          buffer->data->type_annotation.as<PointerTypeNode>();
      auto storage_scope = ptr_type->storage_scope;
      ICHECK(ptr_type) << "Buffer Var's type annotation must be of PointerType";
      if (storage_scope == "shared.tmem") {
        tmem_buffers.push_back(buffer);
      }
    }

    if (tmem_buffers.empty()) {
      return StmtExprMutator::VisitStmt_(op);
    }

    ICHECK(thread_var_.defined()) << "thread_var_ is not defined";

    for (auto buffer : tmem_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }

    /*
    Transform the tmem buffers to new allocations
    transform:
        tmem_buf0 = T.alloc_buffer((128, 128,), "uint64",
    scope="shared.tmem")
        tmem_buf1 = T.alloc_buffer((128, 128,), "uint64",
    scope="shared.tmem")

    into:
        tmem_buf0 = T.alloc_buffer((1,), "uint64", scope="shared.tmem_addr")
        tmem_buf1 = T.alloc_buffer((1,), "uint64", scope="shared.tmem_addr")

        if tx == 0:
          T.ptx_init_tensor_memory(tmem_buf0[0], 128)
          T.ptx_init_tensor_memory(tmem_buf1[0], 128)
    */
    // 1. create new data vars
    Array<Var> new_data_vars;
    for (auto buffer : tmem_buffers) {
      auto data = buffer->data;
      auto new_data =
          Var(data->name_hint, PointerType(PrimType(tmem_dtype_), "shared"));
      var_remap_.Set(data, new_data);
      new_data_vars.push_back(new_data);
    }

    // 2. create new buffers
    Array<Buffer> new_buffers;
    for (auto buffer : tmem_buffers) {
      auto data = buffer->data;
      ICHECK(var_remap_.find(data) != var_remap_.end())
          << "data not found in var_remap_";
      auto new_data = var_remap_.at(data);
      auto new_buffer = Buffer(new_data, tmem_dtype_, Array<PrimExpr>({1}),
                               Array<PrimExpr>({1}), PrimExpr(0), buffer->name,
                               buffer->data_alignment, buffer->offset_factor,
                               buffer->buffer_type);
      new_buffers.push_back(new_buffer);
      buffer_remap_.Set(buffer, new_buffer);
    }

    // remove the tmem buffers
    alloc_buffers.MutateByApply([this](Buffer buf) {
      if (buffer_remap_.find(buf) != buffer_remap_.end()) {
        return buffer_remap_.at(buf);
      }
      return buf;
    });
    if (!alloc_buffers.same_as(op->alloc_buffers)) {
      block.CopyOnWrite()->alloc_buffers = alloc_buffers;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }

    // 3. create init & dealloc calls for new buffers
    std::vector<Stmt> init_mtmem_calls_;
    std::vector<Stmt> dealloc_tmem_calls_;
    for (auto buffer : tmem_buffers) {
      auto data = buffer->data;
      auto old_buffer = buffer_data_to_buffer_.at(data);
      auto new_buffer = buffer_remap_.at(old_buffer);

      // Tmem physical coord range analysis
      ICHECK(old_buffer->shape.size() == 2);

      auto analyzer = std::make_shared<arith::Analyzer>();
      arith::ConstIntBound phy_col_bounds =
          analyzer->const_int_bound(old_buffer->shape[1]);
      int num_cols_required = phy_col_bounds->max_value;
      ICHECK(num_cols_required <= 512)
          << "The number of columns required for tmem buffer "
          << old_buffer->name << " is " << num_cols_required
          << ", which exceeds the maximum of 512 columns";

      int num_cols_allocated = 32; // Align num_cols_allocated to power of 2
      for (; num_cols_allocated < num_cols_required; num_cols_allocated *= 2)
        ;

      auto new_buffer_access = new_buffer.access_ptr(1, DataType::Handle(), 1,
                                                     PrimExpr(0), PrimExpr(1));
      auto alloc_call = Call(DataType::Handle(), tl::ptx_init_tensor_memory(),
                             {new_buffer_access, PrimExpr(num_cols_allocated)});
      init_mtmem_calls_.push_back(Evaluate(alloc_call));
      auto dealloc_call =
          Call(DataType::Handle(), tl::ptx_deallocate_tensor_memory(),
               {new_buffer_access, PrimExpr(num_cols_allocated)});
      dealloc_tmem_calls_.push_back(Evaluate(dealloc_call));
    }
    auto compare_by_buffer_name = [&](const Stmt &a, const Stmt &b) {
      auto call_a = a.as<EvaluateNode>()->value.as<CallNode>();
      auto call_b = b.as<EvaluateNode>()->value.as<CallNode>();
      auto num_cols_a = call_a->args[1].as<IntImmNode>()->value;
      auto num_cols_b = call_b->args[1].as<IntImmNode>()->value;
      return num_cols_a > num_cols_b;
    };
    std::sort(init_mtmem_calls_.begin(), init_mtmem_calls_.end(),
              compare_by_buffer_name);

    Array<Stmt> new_body;
    auto target = Target::Current();
    auto warp_size = TargetGetWarpSize(target);
    auto thread_var_div_warp_size =
        FloorDiv(thread_var_->var, IntImm(thread_var_->var->dtype, warp_size));
    new_body.push_back(IfThenElse(EQ(thread_var_div_warp_size, 0),
                                  init_mtmem_calls_.size() > 1
                                      ? SeqStmt(init_mtmem_calls_)
                                      : init_mtmem_calls_.back(),
                                  Stmt()));
    new_body.push_back(
        Evaluate(Call(DataType::Handle(), builtin::tvm_storage_sync(),
                      {StringImm("shared")})));
    new_body.push_back(block->body);
    new_body.push_back(IfThenElse(EQ(thread_var_div_warp_size, 0),
                                  dealloc_tmem_calls_.size() > 1
                                      ? SeqStmt(dealloc_tmem_calls_)
                                      : dealloc_tmem_calls_.back(),
                                  Stmt()));

    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.erase(attr::kLayoutMap);
    block_ptr->body = SeqStmt(new_body);

    return StmtExprMutator::VisitStmt_(block.get());
  }

  PrimExpr GetTmemOffset(const Buffer &buffer, const Array<PrimExpr> &indices) {
    ICHECK(buffer->shape.size() == 2);
    ICHECK(indices.size() == 2);
    ICHECK(layout_map_.defined());
    ICHECK(layout_map_.count(buffer))
        << "The layout of tmem buffer " << buffer->name
        << " is not defined in the layout map";
    auto layout = layout_map_[buffer];
    ICHECK(layout.defined());
    Array<PrimExpr> tmem_phy_coords = layout->Forward(indices);
    PrimExpr result =
        tmem_phy_coords[0] << 16 |
        tmem_phy_coords
            [1]; // https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-memory-addressing
    return result;
  }

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    // Translate tmem[logical_row, logical_col] to tmem[0] + tmem_offset
    // Where
    // - (logical_row, logical_col) is the logical address in the tmem buffer
    // - tmem[0] is the base address allocated for the tmem buffer
    // - tmem_offset = tmem_phy_coords[0]<<16 | tmem_phy_coords[1]
    //   where tmem_phy_coords = layout.Forward(logical_row, logical_col)
    //   is the physical address in the tmem buffer
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    auto buffer = load->buffer;
    auto indices = load->indices;

    if (buffer_remap_.count(buffer)) {
      auto new_buffer = buffer_remap_[load->buffer];
      return BufferLoad(new_buffer, {0}) + GetTmemOffset(buffer, indices);
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], tmem_dtype_, buffer->shape, buffer->strides,
          buffer->elem_offset, buffer->name, buffer->data_alignment,
          buffer->offset_factor, buffer->buffer_type);
      return BufferLoad(new_buffer, {0}) + GetTmemOffset(buffer, indices);
    }
    return load;
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    auto buffer = store->buffer;
    ICHECK(buffer.scope() != "shared.tmem")
        << "We should never directly store data into tmem!";
    return store;
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(builtin::tvm_access_ptr())) {
      ICHECK_EQ(op->args.size(), 5U);
      Var buffer_data = Downcast<Var>(op->args[1]);
      if (!var_remap_.count(buffer_data)) {
        return StmtExprMutator::VisitExpr_(op);
      }
      Var new_data = var_remap_[buffer_data];
      return Call(
          op->dtype, op->op,
          {op->args[0], new_data, op->args[2], op->args[3], op->args[4]});
    }
    return StmtExprMutator::VisitExpr_(op);
  }

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

  // Datatypes for tmem
  const DataType tmem_dtype_ = DataType::UInt(32);
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_;
  Map<Var, Var> var_remap_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Buffer> buffer_remap_;
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
  Map<Buffer, Layout> layout_map_;
};

PrimFunc LowerSharedTmem(PrimFunc f) {
  auto target = f->GetAttr<Target>(tvm::attr::kTarget);
  ICHECK(target.defined()) << "LowerSharedTmem: Require the target attribute";
  SharedTmemRewriter rewriter;
  f.CopyOnWrite()->body = rewriter.Rewrite(f->body);
  return f;
}

namespace transform {
using namespace tir::transform;

tvm::transform::Pass LowerSharedTmem() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return tl::LowerSharedTmem(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerSharedTmem", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerSharedTmem", LowerSharedTmem);
});

} // namespace transform
} // namespace tl
} // namespace tvm