lower_shared_barrier.cc 6.93 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*!
 *  \file lower_shared_barrier.cc
 *  \brief Convert shared.barrier buffers to plain shared + ptx init.
 */
#include "../op/builtin.h"
#include "tvm/ir/type.h"
#include "tvm/tir/expr.h"
#include "tvm/tir/stmt.h"
#include <tvm/arith/analyzer.h>
#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <utility>

namespace tvm {
namespace tl {

using namespace tir;

class SharedBarrierRewriter : public StmtExprMutator {
public:
  static Stmt Rewrite(Stmt body, bool disable_shuffle_elect = false) {
    SharedBarrierRewriter rewriter(disable_shuffle_elect);
    return rewriter(std::move(body));
  }

private:
  SharedBarrierRewriter(bool disable_shuffle_elect)
      : disable_shuffle_elect_(disable_shuffle_elect) {}

  Stmt VisitStmt_(const BlockNode *op) final {
    Block block = GetRef<Block>(op);
    Array<Buffer> alloc_buffers = op->alloc_buffers;

    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }

    Array<Buffer> barrier_buffers;

    for (const auto &[data, buffer] : buffer_map_) {
      const auto *ptr_type =
          buffer->data->type_annotation.as<PointerTypeNode>();
      auto storage_scope = ptr_type->storage_scope;
      ICHECK(ptr_type) << "Buffer Var's type annotation must be of PointerType";
      if (storage_scope == "shared.barrier") {
        barrier_buffers.push_back(buffer);
      }
    }

    if (barrier_buffers.empty()) {
      return StmtExprMutator::VisitStmt_(op);
    }

    ICHECK(thread_var_.defined()) << "thread_var_ is not defined";

    for (auto buffer : barrier_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }

    /*
    Transform the barrier buffers to new allocations
    transform:
        data_is_ready = T.alloc_buffer((128,), "uint64", scope="shared.barrier")
        compute_is_done = T.alloc_buffer((128,), "uint64",
    scope="shared.barrier")

    into:
        data_is_ready = T.alloc_buffer((1,), "uint64", scope="shared")
        compute_is_done = T.alloc_buffer((1,), "uint64", scope="shared")

        if tx == 0:
          T.ptx_init_barrier_thread_count(data_is_ready[0], 128)
          T.ptx_init_barrier_thread_count(compute_is_done[0], 128)
    */

    // 2. create new buffers
    Array<Buffer> new_buffers;
    for (auto buffer : barrier_buffers) {
      auto data = buffer->data;
      auto new_buffer = Buffer(data, buffer->dtype, Array<PrimExpr>({1}),
                               Array<PrimExpr>({1}), PrimExpr(0), buffer->name,
                               buffer->data_alignment, buffer->offset_factor,
                               buffer->buffer_type);
      new_buffers.push_back(new_buffer);
      buffer_remap_.Set(buffer, new_buffer);
    }

    // remove the barrier buffers
    alloc_buffers.MutateByApply([this](Buffer buf) {
      if (buffer_remap_.find(buf) != buffer_remap_.end()) {
        return buffer_remap_.at(buf);
      }
      return buf;
    });
    if (!alloc_buffers.same_as(op->alloc_buffers)) {
      block.CopyOnWrite()->alloc_buffers = alloc_buffers;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }

    // 3. create init calls for new buffers
    Array<Stmt> init_mbarrier_calls_;
    for (auto buffer : barrier_buffers) {
      auto data = buffer->data;
      auto old_buffer = buffer_data_to_buffer_.at(data);
      auto new_buffer = buffer_remap_.at(old_buffer);
      auto count = old_buffer->shape[0];

      auto call =
          Call(DataType::Handle(), builtin::ptx_init_barrier_thread_count(),
               {BufferLoad(new_buffer, {0}), PrimExpr(count)});
      init_mbarrier_calls_.push_back(Evaluate(call));
    }
    if (init_mbarrier_calls_.empty())
      return block;

    Array<Stmt> new_body;
    PrimExpr condition;
    if (!disable_shuffle_elect_) {
      condition = Call(DataType::Bool(), tl_shuffle_elect(), {0});
    } else {
      condition = EQ(thread_var_->var, 0);
    }
    new_body.push_back(IfThenElse(condition,
                                  init_mbarrier_calls_.size() == 1
                                      ? init_mbarrier_calls_.back()
                                      : SeqStmt(init_mbarrier_calls_),
                                  Stmt()));
    new_body.push_back(
        Evaluate(Call(DataType::Handle(), builtin::tvm_storage_sync(),
                      {StringImm("shared")})));
    new_body.push_back(block->body);

    block.CopyOnWrite()->body = SeqStmt(new_body);

    return StmtExprMutator::VisitStmt_(block.get());
  }

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    auto buffer = load->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_buffer = buffer_remap_[load->buffer];
      return BufferLoad(new_buffer, load->indices);
    }
    return load;
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    auto buffer = store->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, store->indices);
    }
    return store;
  }

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    return StmtExprMutator::VisitStmt_(op);
  }

  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Buffer> buffer_remap_;
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
  // Disable shuffle elect for the warp specialized kernel
  bool disable_shuffle_elect_;
};

PrimFunc LowerSharedBarrier(PrimFunc f, bool disable_shuffle_elect) {
  f.CopyOnWrite()->body =
      SharedBarrierRewriter::Rewrite(f->body, disable_shuffle_elect);
  return f;
}

namespace transform {
using namespace tir::transform;

tvm::transform::Pass LowerSharedBarrier() {
  auto pass_func = [=](PrimFunc f, const IRModule &m, PassContext ctx) {
    bool disable_shuffle_elect =
        ctx->GetConfig<Bool>(kDisableShuffleElect, Bool(false)).value();
    return tl::LowerSharedBarrier(std::move(f), disable_shuffle_elect);
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerSharedBarrier", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerSharedBarrier", LowerSharedBarrier);
});

} // namespace transform
} // namespace tl
} // namespace tvm