lower_intrin.cc 14.9 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 *  Lower intrinsic calls and ops to device specific ir when possible.
 * \file lower_intrin.cc
 */
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
#include <tvm/target/target.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>
#include <tvm/tir/transform.h>

#include <limits>
#include <unordered_set>

#include "arith/ir_mutator_with_analyzer.h"
#include "arith/pattern_match.h"

namespace tvm {
namespace tl {
using namespace tir;

class IntrinInjecter : public tvm::arith::IRMutatorWithAnalyzer {
public:
  using IRMutatorWithAnalyzer::VisitExpr_;
  using IRMutatorWithAnalyzer::VisitStmt_;
  using FLowerGeneral = ffi::TypedFunction<PrimExpr(PrimExpr)>;

  IntrinInjecter(arith::Analyzer *analyzer, std::string target,
                 std::string mtriple = "")
      : IRMutatorWithAnalyzer(analyzer) {
    std::vector<std::string> patterns;
    patterns.push_back(target + ".FLowerIntrinsic");
    patterns.push_back(target + ".FLegalize");
    bool is_llvm_aarch64 = (mtriple.find("aarch64") != std::string::npos);
    if (is_llvm_aarch64) {
      patterns.push_back(target + ".aarch64.FLowerIntrinsic");
      patterns.push_back(target + ".aarch64.FLegalize");
    }
    patterns.push_back("default.FLowerIntrinsic");
    patterns.push_back("default.FLegalize");

    for (const std::string &pattern : patterns)
      if (Op::HasAttrMap(pattern)) {
        attr_maps_.push_back(Op::GetAttrMap<FLowerGeneral>(pattern));
        if (fma_ == nullptr) {
          fma_ = (*attr_maps_.rbegin()).get(Op::Get("tir.fma"), nullptr);
        }
      }
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (auto *ptr_op = op->op.as<OpNode>()) {
      for (const auto &f_attr_map : attr_maps_) {
        FLowerGeneral f = f_attr_map.get(GetRef<Op>(ptr_op), nullptr);
        if (f != nullptr) {
          PrimExpr e = GetRef<PrimExpr>(op);
          PrimExpr r = f(e);
          ICHECK(r.defined()) << "intrinsic rule must always return valid Expr";
          if (!r.same_as(e)) {
            r = this->VisitExpr(r);
            if (r.defined()) {
              return r;
            }
          }
        }
      }
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

  PrimExpr VisitExpr_(const AddNode *op) final {
    if (const MulNode *mb = op->b.as<MulNode>()) {
      return MakeFMA(mb->a, mb->b, op->a, op);
    } else if (const MulNode *ma = op->a.as<MulNode>()) {
      return MakeFMA(ma->a, ma->b, op->b, op);
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

  // We use floordiv for integer analysis,
  // but will need to lower them to native truncdiv instructions
  PrimExpr VisitExpr_(const FloorDivNode *op) final {
    auto e = GetRef<PrimExpr>(op);
    PrimExpr ret = IRMutatorWithAnalyzer::VisitExpr_(op);
    op = ret.as<FloorDivNode>();
    if (op == nullptr)
      return ret;
    int shift;
    const DataType &dtype = op->dtype;
    ICHECK(dtype.is_int() || dtype.is_uint());

    // lower (a + 31) // 512 to (a + 31) >> 5
    if (support_bitwise_op_ && is_const_power_of_two_integer(op->b, &shift)) {
      // lower to right shift if possible.
      return op->a >> make_const(dtype, shift);
    }

    if (analyzer_->CanProveGreaterEqual(op->b, 0)) {
      // Common path, positive divisor
      if (analyzer_->CanProveGreaterEqual(op->a, 0) ||
          analyzer_->CanProveGreaterEqual(e, 0)) {
        return truncdiv(op->a, op->b);
      }

      // If the numerator's lower bound is known, express the floordiv
      // in terms of truncdiv using only positive operands.
      arith::ConstIntBound const_int_bound = analyzer_->const_int_bound(op->a);
      if (const_int_bound->min_value < 0 &&
          const_int_bound->min_value >
              -(Downcast<IntImm>(tvm::max_value(op->a->dtype.element_of()))
                    ->value)) {
        // The goal is to write floordiv(a,b) in terms of truncdiv, without
        // using negative operands.
        //
        // For any integer c
        //
        //   floordiv(a,b) == floordiv(a + b*c - b*c, b)
        //                 == floordiv(a + b*c, b) - c
        //
        // Choosing `c = ceildiv(-a_min, b)`.  This can be rewritten in terms of
        // truncdiv as follows.
        //
        //   c == ceildiv(-a_min,b)
        //     == floordiv(-a_min + (b-1), b)
        //     == truncdiv(-a_min + (b-1), b)
        //
        // When substituted into `a + b*c`, this results in a positive argument.
        //
        //   a + b*c
        //     == a + b*ceildiv(-a_min,b)
        //     == a - b*floordiv(a_min,b)
        //     >= a - b*floordiv(a,b)
        //     == floormod(a, b)
        //     >= 0
        //
        // Since the argument is positive, this allows floordiv to be written as
        // followed.
        //
        //   floordiv(a,b)
        //     == floordiv(a + b*c, b) - c
        //     == truncdiv(a + b*c, b) - c
        IntImm min(op->a->dtype.element_of(), const_int_bound->min_value);
        PrimExpr ceildiv = truncdiv((op->b - 1) - min, op->b);
        PrimExpr offset_numerator =
            analyzer_->Simplify(op->a + op->b * ceildiv);
        return truncdiv(offset_numerator, op->b) - ceildiv;
      }

      DLOG(INFO) << "LowerFloorDiv: Cannot decide the sign of divident";
      PrimExpr rdiv = truncdiv(op->a, op->b);
      PrimExpr rmod = truncmod(op->a, op->b);
      // condition on b >= 0.
      // truncmod(a, b) < 0 will implies ceildiv,
      // So we need to correct these cases.
      if ((dtype == DataType::Int(32) || dtype == DataType::Int(64)) &&
          support_bitwise_op_) {
        // equivalent to rdiv + (rmod >= 0 ? 0: -1);
        return rdiv + (rmod >> make_const(dtype, dtype.bits() - 1));
      } else {
        return tir::Select(rmod >= 0, rdiv, rdiv - make_const(dtype, 1));
      }

    } else {
      if (dtype.is_float()) {
        // floor(a / b)
        return VisitExpr_(tvm::floor(op->a / op->b).as<CallNode>());
      } else {
        // uncommon case
        DLOG(INFO) << "LowerFloorDiv: Cannot decide the sign of divisor";
        auto rmod = tir::Var("rmod", dtype);
        auto rdiv = tir::Var("rdiv", dtype);
        // b >= 0 => (rmod >=0 ? rdiv : rdiv - 1)
        // b < 0  => (rmod <= 0 ? rdiv : rdiv - 1)
        PrimExpr let_rdiv = tir::Let(
            rdiv, truncdiv(op->a, op->b),
            tir::Select((op->b >= 0 && rmod >= 0) || (op->b < 0 && rmod <= 0),
                        rdiv, rdiv - make_const(dtype, 1)));
        return Let(rmod, truncmod(op->a, op->b), let_rdiv);
      }
    }
  }

  PrimExpr VisitExpr_(const FloorModNode *op) final {
    PrimExpr ret = IRMutatorWithAnalyzer::VisitExpr_(op);
    op = ret.as<FloorModNode>();
    if (op == nullptr)
      return ret;
    // Lower floordiv to native truncdiv.
    int shift;
    const DataType &dtype = op->dtype;
    ICHECK(dtype.is_int() || dtype.is_uint());

    if (support_bitwise_op_ && is_const_power_of_two_integer(op->b, &shift)) {
      // lower to masking if possible.
      int64_t mask =
          (static_cast<int64_t>(1) << static_cast<int64_t>(shift)) - 1;
      return op->a & make_const(dtype, mask);
    }

    if (analyzer_->CanProveGreaterEqual(op->b, 0)) {
      // Common pass, positive divisor
      if (analyzer_->CanProveGreaterEqual(op->a, 0)) {
        return truncmod(op->a, op->b);
      }

      // If the numerator's lower bound is known, express the floormod
      // in terms of truncmod using only positive operands.
      arith::ConstIntBound const_int_bound = analyzer_->const_int_bound(op->a);
      if (const_int_bound->min_value < 0 &&
          const_int_bound->min_value >
              -(Downcast<IntImm>(tvm::max_value(op->a->dtype.element_of()))
                    ->value)) {
        // The goal is to write floormod(a,b) in terms of truncdiv and truncmod,
        // without using negative operands.
        //
        // For any integer c
        //
        //   floormod(a, b) == floormod(a + b*c, b)
        //
        // Choosing `c = ceildiv(-a_min, b)`.  This can be rewritten in terms of
        // truncdiv as follows.
        //
        //   c == ceildiv(-a_min,b)
        //     == floordiv(-a_min + (b-1), b)
        //     == truncdiv(-a_min + (b-1), b)
        //
        // When substituted into `a + b*c`, this results in a positive argument.
        //
        //   a + b*c
        //     == a + b*ceildiv(-a_min,b)
        //     == a - b*floordiv(a_min,b)
        //     >= a - b*floordiv(a,b)
        //     == floormod(a, b)
        //     >= 0
        //
        // Since the argument is positive, this allows floordiv to be written as
        // followed.
        //
        //   floormod(a,b)
        //     == floormod(a + b*c, b)
        //     == truncmod(a + b*c, b)
        IntImm min(op->a->dtype.element_of(), const_int_bound->min_value);
        PrimExpr ceildiv = truncdiv(-min + (op->b - 1), op->b);
        PrimExpr offset_numerator =
            analyzer_->Simplify(op->a + op->b * ceildiv);
        return truncmod(offset_numerator, op->b);
      }

      DLOG(INFO) << "LowerFloorMod: Cannot decide the sign of divident";
      // NOTE:condition on b >= 0.
      // mod(a, b) < 0 will imply we are doing ceildiv,
      // So we need to correct these cases.
      PrimExpr rmod = truncmod(op->a, op->b);
      if ((dtype == DataType::Int(32) || dtype == DataType::Int(64)) &&
          support_bitwise_op_) {
        // (rmod >> shift) & b
        // -> (rmod >= 0 ? 0: -1) & b
        // -> rmod >= 0 ? 0 : b
        return rmod + (op->b & (rmod >> make_const(dtype, dtype.bits() - 1)));
      } else {
        return tir::Select(rmod >= 0, rmod, rmod + op->b);
      }

    } else {
      if (dtype.is_float()) {
        // a - floor(a / b) * b
        return op->a -
               (VisitExpr_(tvm::floor(op->a / op->b).as<CallNode>()) * op->b);
      } else {
        // uncommon case
        DLOG(INFO)
            << "LowerFloorMod: Cannot decide the sign of divsor and divident";
        auto rmod = tir::Var("rmod", dtype);
        // b > 0 && rmod >= 0 -> rmod
        // b > 0 && rmod < 0  -> rmod + b
        // b < 0 && rmod < 0 -> rmod
        // b < 0 && rmod > 0 -> rmod + b
        return Let(rmod, truncmod(op->a, op->b),
                   Select((op->b >= 0 && rmod >= 0) || (op->b < 0 && rmod <= 0),
                          rmod, rmod + op->b));
      }
    }
  }

  PrimExpr VisitExpr_(const MaxNode *op) final {
    using namespace arith;
    PVar<PrimExpr> x, y;
    PVar<IntImm> c;
    auto e = GetRef<PrimExpr>(op);
    if (max(floordiv(x, y), c).Match(e) && c.Eval()->value >= 0 &&
        analyzer_->CanProveGreaterEqual(y.Eval(), 0)) {
      return max(VisitExpr(truncdiv(x, y).Eval()), c.Eval());
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

  PrimExpr VisitExpr_(const EQNode *op) final {
    using namespace arith;
    PVar<PrimExpr> x, y;
    auto e = GetRef<PrimExpr>(op);
    if ((floormod(x, y) == 0).Match(e)) {
      return VisitExpr((truncmod(x, y) == 0).Eval());
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

  PrimExpr VisitExpr_(const NENode *op) final {
    using namespace arith;
    PVar<PrimExpr> x, y;
    auto e = GetRef<PrimExpr>(op);
    if ((floormod(x, y) != 0).Match(e)) {
      return VisitExpr((truncmod(x, y) != 0).Eval());
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

private:
  PrimExpr SwapBroadcastCast(const PrimExpr &e) {
    // Try to change broadcast(cast(x)) to cast(broadcast(x))
    // For some targets, LLVM will generate more efficient FMA
    // instruction with the latter. For example, vmla vs. vmlal
    // on ARM.
    if (const BroadcastNode *bcast = e.as<BroadcastNode>()) {
      if (const CastNode *cast = bcast->value.as<CastNode>()) {
        auto should_swap = [&]() {
          // Maintain behaviour (int8 -> int16, fp16 -> fp32).
          if (cast->dtype.bits() == cast->value.dtype().bits() * 2) {
            return true;
          }
          // Check both operands are integer-like.
          if (!cast->dtype.is_uint() && !cast->dtype.is_int()) {
            return false;
          }
          if (!cast->value.dtype().is_uint() && !cast->value.dtype().is_int()) {
            return false;
          }
          // If both are integer-like, swap if we have a widening cast.
          return cast->dtype.bits() > cast->value.dtype().bits();
        };

        if (should_swap()) {
          PrimExpr new_bcast = Broadcast(cast->value, bcast->lanes);
          return Cast(bcast->dtype, new_bcast);
        }
      }
    }
    return e;
  }

  PrimExpr MakeFMA(const PrimExpr &a, const PrimExpr &b, const PrimExpr &c,
                   const AddNode *op) {
    // emit fma instruction: a * b + c
    PrimExpr lhs = SwapBroadcastCast(a);
    PrimExpr rhs = SwapBroadcastCast(b);

    if (fma_ != nullptr && op->dtype.is_float()) {
      PrimExpr r = fma_(Call(op->dtype, builtin::fma(), {lhs, rhs, c}));
      if (r.defined())
        return this->VisitExpr(r);
    } else {
      if (!lhs.same_as(a) || !rhs.same_as(b)) {
        PrimExpr mul = this->VisitExpr(Mul(lhs, rhs));
        return Add(mul, this->VisitExpr(c));
      }
    }
    return IRMutatorWithAnalyzer::VisitExpr_(op);
  }

  // attribute maps, shared only when FLegalize == FLowerIntrinsic
  std::vector<OpAttrMap<FLowerGeneral>> attr_maps_;
  FLowerGeneral fma_{nullptr};
  bool support_bitwise_op_{true};
};

Stmt LowerIntrinStmt(Stmt stmt, const std::string &target) {
  arith::Analyzer analyzer;
  return IntrinInjecter(&analyzer, target)(std::move(stmt));
}

namespace transform {

tir::transform::Pass LowerIntrin() {
  using namespace tir::transform;
  auto pass_func = [](PrimFunc f, IRModule m, PassContext ctx) {
    auto *n = f.CopyOnWrite();
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerIntrin: Require the target attribute";
    arith::Analyzer analyzer;
    auto mtriple = target.value()->GetAttr<String>("mtriple", "");
    n->body = IntrinInjecter(&analyzer, target.value()->kind->name,
                             mtriple.value())(std::move(n->body));
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerIntrin", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerIntrin", LowerIntrin);
});

} // namespace transform

} // namespace tl
} // namespace tvm