loop_partition.cc 9.61 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file loop_partition.cc
 * \brief Partition parallel loops onto threads
 */

#include "loop_partition.h"

#include <tvm/tir/stmt_functor.h>

#include <utility>

namespace tvm {
namespace tl {

using namespace tir;

class BufferIndiceSimplify : public StmtExprMutator {
public:
  BufferIndiceSimplify(arith::Analyzer *analyzer) : analyzer_(analyzer) {}

private:
  PrimExpr VisitExpr_(const BufferLoadNode *node) final {
    auto visited = StmtExprMutator::VisitExpr_(node);
    auto n = Downcast<BufferLoad>(visited);
    auto nptr = n.CopyOnWrite();
    nptr->indices = nptr->indices.Map(
        [&](const auto &e) { return analyzer_->Simplify(e); });
    return n;
  }
  Stmt VisitStmt_(const BufferStoreNode *node) final {
    auto visited = StmtExprMutator::VisitStmt_(node);
    auto n = Downcast<BufferStore>(visited);
    auto nptr = n.CopyOnWrite();
    nptr->indices = nptr->indices.Map(
        [&](const auto &e) { return analyzer_->Simplify(e); });
    return n;
  }
  arith::Analyzer *analyzer_;
};

// Rewrite the parallel loop into a common loop, which is mapped to threads
For PartitionLoop(For op, Var thread_var, arith::Analyzer *analyzer,
                  const Fragment &loop_layout) {
  ICHECK(loop_layout.defined());
  ICHECK(thread_var.defined());
  int old_loop_depth = loop_layout->InputDim();
  int new_loop_depth = loop_layout->OutputDim();
  // Create the new loop iter var
  Array<Var> vars;
  for (int i = 0; i < new_loop_depth; i++) {
    Var var = Var(std::string{char('i' + i)});
    analyzer->Bind(var, Range::FromMinExtent(make_zero(var->dtype),
                                             loop_layout->OutputShape()[i]));
    vars.push_back(var);
  }
  vars.push_back(thread_var);
  // create the substitute map, and the loop body
  Map<Var, PrimExpr> vmap;
  Stmt body = std::move(op);
  Array<PrimExpr> loop_mins;
  Array<PrimExpr> loop_extents;
  auto inverse_info = loop_layout->InverseWithLevel();
  auto inv_loop = inverse_info.first;
  // Must check the guard if the layout can not be proved as bijective
  bool need_guard = inverse_info.second != arith::IterMapLevel::Bijective;
  auto indices = inv_loop->Forward(Array<PrimExpr>(vars.begin(), vars.end()));
  // Normalize thread var once so we can reuse the same substitution later.
  Map<Var, PrimExpr> thread_offset_map;
  bool has_thread_offset = false;
  if (loop_layout->ThreadRange().defined()) {
    auto range = loop_layout->ThreadRange();
    thread_offset_map.Set(thread_var, thread_var - range->min);
    has_thread_offset = true;
  }
  for (int i = 0; i < old_loop_depth; i++) {
    const ForNode *loop = body.as<ForNode>();
    ICHECK(loop != nullptr);
    vmap.Set(loop->loop_var, indices[i]);
    loop_mins.push_back(loop->min);
    loop_extents.push_back(loop->extent);
    body = loop->body;
  }
  // substitute and re-construct the serial loop
  body = Substitute(body, vmap);
  // Guard executes the recovered loop body only if each inverse-mapped iterator
  // falls back into the original For ranges. We first check every axis from the
  // old loop nest (old_loop_depth) and then the extra index produced by inverse
  // layouts that carry a replicate/thread component (`inv_output_shape`). Both
  // must stay within bounds to ensure correctness. Example: layout([i, j]) =
  // floor((i * 16 + j) / 32) may generate extra points when the new loop
  // enumerates 0..31; the guard drops iterations whose inverse-mapped (i, j)
  // or replicate index fall outside their original extents.
  // Example: layout([i, j]) = floor((i * 16 + j) / 32) may produce extra points
  // when the new loop enumerates 0..31; this guard skips iterations where the
  // inverse i, j land outside the original extents. This protects
  // non-surjective loop_layout mappings that otherwise over-cover the parallel
  // space.
  PrimExpr guard = const_true();

  if (need_guard) {
    for (int i = 0; i < old_loop_depth; i++) {
      PrimExpr index = indices[i];
      if (has_thread_offset) {
        index = Substitute(index, thread_offset_map);
      }
      PrimExpr lower_bound = analyzer->Simplify(index >= loop_mins[i]);
      PrimExpr upper_bound =
          analyzer->Simplify(index < loop_mins[i] + loop_extents[i]);
      guard = And(guard, And(lower_bound, upper_bound));
    }
    auto inv_output_shape = inv_loop->OutputShape();
    if (inv_output_shape.size() > static_cast<size_t>(old_loop_depth)) {
      PrimExpr replicate_index = indices[old_loop_depth];
      if (has_thread_offset) {
        replicate_index = Substitute(replicate_index, thread_offset_map);
      }
      PrimExpr replicate_extent = inv_output_shape[old_loop_depth];
      PrimExpr lower_bound = analyzer->Simplify(
          replicate_index >= make_zero(replicate_index.dtype()));
      PrimExpr upper_bound =
          analyzer->Simplify(replicate_index < replicate_extent);
      guard = And(guard, And(lower_bound, upper_bound));
    }
    PrimExpr simplified_guard = analyzer->Simplify(guard);
    if (!analyzer->CanProve(simplified_guard)) {
      body = IfThenElse(simplified_guard, body, Stmt());
    }
  }

  for (int i = new_loop_depth - 1; i >= 0; i--) {
    body = For(vars[i], make_zero(vars[i]->dtype), inv_loop->InputShape()[i],
               ForKind::kSerial, body);
    analyzer->Bind(vars[i], Range(0, inv_loop->InputShape()[i]));
  }

  body = BufferIndiceSimplify(analyzer)(body);

  if (has_thread_offset) {
    body = Substitute(body, thread_offset_map);
  }

  auto for_node = LoopPragmaUnroll(Downcast<For>(body));
  return for_node;
}

class LoopPramaUnroller : public StmtExprMutator {
public:
  LoopPramaUnroller() = default;

private:
  Stmt VisitStmt_(const ForNode *node) final {
    if (node->kind == ForKind::kSerial) {
      auto analyzer = std::make_shared<arith::Analyzer>();
      if (as_const_int(analyzer->Simplify(node->extent)) == nullptr) {
        return StmtExprMutator::VisitStmt_(node);
      }
      For new_for = GetRef<For>(node);
      auto for_ptr = new_for.CopyOnWrite();
      for_ptr->annotations.Set(tir::attr::pragma_unroll_explicit, Bool(false));
      for_ptr->kind = ForKind::kUnrolled;
      return new_for;
    }
    return StmtExprMutator::VisitStmt_(node);
  }
};

class LoopPartitioner : public StmtExprVisitor {
public:
  LoopPartitioner() = default;

  Fragment Partition(const For &op, int num_thread, int vectorize_size) {
    this->VisitStmt(op);
    DataType dtype = DataType::Int(32);
    if (!loop_vars_.empty()) {
      dtype = loop_vars_.back()->var.dtype();
    }
    PrimExpr flattened = make_const(dtype, 0);
    PrimExpr vector_extent = make_const(dtype, vectorize_size);
    PrimExpr thread_extent_const = make_const(dtype, num_thread);
    for (size_t i = 0; i < loop_vars_.size(); i++) {
      PrimExpr extent = loop_vars_[i]->dom->extent;
      flattened = flattened * extent + loop_vars_[i]->var;
    }
    PrimExpr access_idx = FloorDiv(flattened, vector_extent);
    PrimExpr thd = FloorMod(access_idx, thread_extent_const);
    PrimExpr idx = FloorDiv(access_idx, thread_extent_const) * vector_extent +
                   FloorMod(flattened, vector_extent);

    auto fragment = Fragment(loop_vars_, {idx}, {thd}, {});
    if (has_fragment_) {
      // for fragment buffer, we don't need to replicate the loop layout
      auto thread_extent = *as_const_int(fragment->ThreadExtent());
      auto num_thread_fragment = num_thread / thread_extent;
      fragment = fragment->Replicate(num_thread_fragment);
    }
    return fragment;
  }

private:
  void VisitExpr_(const BufferLoadNode *op) final {
    if (op->buffer.scope() == "local.fragment") {
      has_fragment_ = true;
    }
    StmtExprVisitor::VisitExpr_(op);
  }

  void VisitStmt_(const BufferStoreNode *op) final {
    if (op->buffer.scope() == "local.fragment") {
      has_fragment_ = true;
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const ForNode *node) final {
    if (node->kind == ForKind::kParallel) {
      body_ = node->body;
      loop_vars_.push_back(
          IterVar(Range::FromMinExtent(node->min, node->extent), node->loop_var,
                  IterVarType::kDataPar));
    }
    StmtExprVisitor::VisitStmt_(node);
  }

  Stmt body_;
  PrimExpr flattened = 0;
  bool has_fragment_ = false;
  Array<IterVar> loop_vars_;
};

Fragment PlanLoopPartition(const For &op, size_t num_thread,
                           int vectorize_size) {
  LoopPartitioner partitioner;
  return partitioner.Partition(op, num_thread, vectorize_size);
}

Fragment PlanLoopPartition(const For &op, int vectorize_size,
                           const Range &thread_range) {
  size_t num_thread = *as_const_int(thread_range->extent);
  LoopPartitioner partitioner;
  Fragment fragment = partitioner.Partition(op, num_thread, vectorize_size);
  return fragment->BindThreadRange(thread_range);
}

For LoopPragmaUnroll(For stmt) {
  LoopPramaUnroller unroller;
  For unrolled = Downcast<For>(unroller(std::move(stmt)));
  return unrolled;
}

} // namespace tl
} // namespace tvm