legalize_safe_memory_access.cc 13.1 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*!
 * \file legalize_safe_memory_access.cc
 * \brief legalize safe memory access
 */

#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <utility>

#include "../op/builtin.h"
#include "../op/parallel.h"
#include "arith/ir_mutator_with_analyzer.h"
#include "loop_partition.h"
#include "loop_vectorize.h"

namespace tvm {
namespace tl {

using namespace tir;
using arith::IRMutatorWithAnalyzer;

// Helper class to find leaf For nodes in a given IR
class LeafForFinder : public StmtVisitor {
public:
  std::vector<For> leaf_for_nodes;

private:
  void VisitStmt_(const ForNode *op) final {
    has_child_for_ = false;
    bool parent_has_child_for = parent_has_child_for_;
    parent_has_child_for_ = false;

    StmtVisitor::VisitStmt(op->body);

    if (!has_child_for_) {
      leaf_for_nodes.push_back(GetRef<For>(op));
    }

    parent_has_child_for_ = parent_has_child_for;
    parent_has_child_for_ = true;
  }

private:
  bool has_child_for_ = false;
  bool parent_has_child_for_ = false;
};

// GlobalMemChecker for a BufferLoad/BufferStore node:
// 1. Identify BufferLoad and BufferStore nodes.
// 2. Check if the buffer is in global scope.
// 3. For each index, compare against the buffer's shape.
//    If the index might exceed the shape (upper bound too large),
//    log a warning or handle accordingly.
struct GlobalMemChecker : public StmtExprVisitor {

  GlobalMemChecker(arith::Analyzer *analyzer, bool recursively_collect_conds)
      : analyzer_(analyzer),
        recursively_collect_conds_(recursively_collect_conds) {}
  void VisitExpr_(const BufferLoadNode *op) final {
    // Check if the buffer is in global scope
    // This is because we are writing TilePrograms, where out of bounds
    // accesses only happen in the global buffer.
    if (IsGlobalBuffer(op->buffer)) {
      CheckBufferIndices(op->buffer, op->indices, /*is_load=*/true);
    }
    if (recursively_collect_conds_) {
      StmtExprVisitor::VisitExpr_(op);
    }
  }

  void VisitStmt_(const BufferStoreNode *op) final {
    // Check if the buffer is in global scope
    if (IsGlobalBuffer(op->buffer)) {
      CheckBufferIndices(op->buffer, op->indices, /*is_load=*/false);
    }
    if (recursively_collect_conds_) {
      StmtExprVisitor::VisitStmt_(op);
    }
  }

  // Helper function to determine if a buffer is global
  bool IsGlobalBuffer(const Buffer &buffer) {
    // The storage scope is often encoded in the buffer->data var name or
    // associated attributes. In typical TVM IR, global buffers have scope
    // "global". Here we assume a helper function GetPtrStorageScope is
    // available. If not, you might need to parse buffer->data->name_hint or
    // associated attributes.
    String scope = buffer.scope();
    return scope == "global";
  }

  // Check each index against the buffer shape dimensions
  void CheckBufferIndices(const Buffer &buffer, const Array<PrimExpr> &indices,
                          bool is_load) {
    // Ensure indices count matches buffer dimension
    if (indices.size() != buffer->shape.size()) {
      LOG(WARNING) << "Buffer access dimension mismatch: indices size ("
                   << indices.size() << ") vs. shape size ("
                   << buffer->shape.size() << ")";
      return;
    }

    for (size_t i = 0; i < indices.size(); i++) {
      PrimExpr index = indices[i];
      PrimExpr shape_dim = buffer->shape[i];

      bool has_variable = false;
      PostOrderVisit(index, [&](const ObjectRef &obj) {
        if (const VarNode *v = obj.as<VarNode>()) {
          has_variable = true;
        }
      });
      if (!has_variable) {
        // If index is a constant, we can skip the check
        continue;
      }

      // We want to check if index < shape_dim can be proven.
      // If analyzer->CanProve(index < shape_dim) returns false,
      // it means we cannot prove the access is within bounds.
      PrimExpr upper_bound_cond = index < shape_dim;
      if (!analyzer_->CanProve(upper_bound_cond,
                               arith::ProofStrength::kSymbolicBound)) {
        _conditions.push_back(upper_bound_cond);
      }
      // Check if index >= 0 can be proven.
      PrimExpr lower_bound_cond = index >= 0;
      if (!analyzer_->CanProve(lower_bound_cond,
                               arith::ProofStrength::kSymbolicBound)) {
        _conditions.push_back(lower_bound_cond);
      }
    }
  }

  Array<PrimExpr> GetConditions() { return _conditions; }

private:
  Array<PrimExpr> _conditions;
  arith::Analyzer *analyzer_;
  bool recursively_collect_conds_;
};

class SafeMemorysRewriter : public StmtExprMutator {
  arith::Analyzer *analyzer_;

public:
  explicit SafeMemorysRewriter(Map<Buffer, PrimExpr> annotated_safe_value_map,
                               arith::Analyzer *analyzer)
      : annotated_safe_value_map_(std::move(annotated_safe_value_map)),
        analyzer_(analyzer) {}

private:
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));

    // For Load/Store, we only check the current node, not its children.
    // Since rewriter will recursively visit children.
    GlobalMemChecker checker(analyzer_, /*recursively_collect_conds=*/false);
    checker(load);
    Array<PrimExpr> conditions = checker.GetConditions();

    if (conditions.empty()) {
      return load;
    }

    // For loading, we can always use safe value if the access is out of
    // bounds
    PrimExpr value = load;
    for (auto cond : conditions) {
      ICHECK(cond.dtype() == DataType::Bool(1))
          << "condition is not a boolean: " << cond;
      value = if_then_else(cond, value, GetSafeValue(load->buffer));
    }
    return value;
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    // Check if the buffer is in global scope
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));

    GlobalMemChecker checker(analyzer_, /*recursively_collect_conds=*/false);
    checker(store);
    Array<PrimExpr> conditions = checker.GetConditions();

    // Skip boundary check if the store value is an IfThenElse
    if (const IfThenElseNode *if_node = store->value.as<IfThenElseNode>()) {
      if (!conditions.empty()) {
        LOG(WARNING)
            << "Skipping boundary check for store with IfThenElse value: "
            << store->value
            << "\nAs manual boundary check detected, potential out-of-bounds "
               "access may occur."
            << "\nAuto detect boundaries are " << conditions;
        return store;
      }
      return store;
    }

    if (conditions.empty()) {
      return store;
    }

    // If a store is out of bounds, we skip the corresponding stmt directly.
    Stmt store_with_conditions = store;
    for (auto cond : conditions) {
      store_with_conditions = IfThenElse(cond, store_with_conditions);
    }
    return store_with_conditions;
  }

  // Recursively check Load/Store in the call arguments.
  // For example
  // T.call_extern("handle", "atomicAddx2", T.address_of(C),
  // T.address_of(C_shared))

  // NOTE(chaofan): This is currently not the most rigorous solution.
  // The check here is primarily intended to handle extern functions like
  // atomicAdd, which may involve memory access. Due to their special nature,
  // the BufferLoad in their parameters might be used for boundary checks of the
  // current statement. The current solution adopts a simplified approach:
  // directly applying the boundary constraints of all parameters to the
  // statement. While not entirely precise, it addresses most common scenarios.
  Stmt VisitStmt_(const EvaluateNode *op) final {
    auto evaluate = Downcast<Evaluate>(op);

    if (const CallNode *call_op = op->value.as<CallNode>()) {
      auto call = Downcast<Call>(op->value);
      if (call->op == builtin::call_extern()) {
        // For CallExtern, we recursively collect conditions from all children.
        // Since we cannot rewrite any BufferLoad in its children (Rewrite will
        // cause potential Nullptr exception).
        GlobalMemChecker checker(analyzer_, /*recursively_collect_conds=*/true);
        checker(call);
        Array<PrimExpr> conditions = checker.GetConditions();

        if (conditions.empty()) {
          return evaluate;
        }

        Stmt evaluate_with_conditions = evaluate;
        for (auto cond : conditions) {
          evaluate_with_conditions = IfThenElse(cond, evaluate_with_conditions);
        }
        return evaluate_with_conditions;
      }
    }

    return evaluate;
  }

  bool IsLocalBuffer(const Buffer &buffer) {
    String scope = buffer.scope();
    return scope == "local" || scope == "local.fragment" ||
           scope == "local.var";
  }

  bool isSharedBuffer(const Buffer &buffer) {
    String scope = buffer.scope();
    return scope == "shared" || scope == "shared.dyn";
  }

  bool IsGlobalBuffer(const Buffer &buffer) {
    String scope = buffer.scope();
    return scope == "global";
  }
  // Get the safe value of the buffer
  PrimExpr GetSafeValue(const Buffer &buffer) {
    if (annotated_safe_value_map_.count(buffer)) {
      return annotated_safe_value_map_[buffer];
    }
    return make_zero(buffer->dtype);
  }

  Map<Buffer, PrimExpr> annotated_safe_value_map_;
};

// Class to legalize safe memory access by transforming them appropriately
class SafeMemoryLegalizer : IRMutatorWithAnalyzer {
public:
  // Static method to substitute and transform the given PrimFunc
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    // Create an instance of the legalizer with the analyzer
    SafeMemoryLegalizer substituter(&analyzer);
    // Get a mutable copy of the function node
    PrimFuncNode *fptr = f.CopyOnWrite();
    for (const auto &[_, buffer] : f->buffer_map) {
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    // Apply the legalizer to the function body
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

private:
  // Constructor initializing the base class with the analyzer
  SafeMemoryLegalizer(arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer) {}

  // Override the VisitStmt_ method to handle ForNode (loop statements)
  Stmt VisitStmt_(const ForNode *op) final {
    // Visit and potentially modify the loop node
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto has_inner_loop = HasInnerLoop(for_node->body);
    if (!has_inner_loop) {
      SafeMemorysRewriter rewriter(annotated_safe_value_map_, analyzer_);
      for_node.CopyOnWrite()->body = rewriter(for_node->body);
      // // Detect Buffer Load Node in the loop body, collect the indices and
      // buffer size

      // // Run the checker on the loop body
      // GlobalMemChecker checker(analyzer_);
      // checker(for_node->body);
      // Array<PrimExpr> conditions = checker.GetConditions();
      // auto body = for_node->body;
      // // Note that we might have duplicate conditions
      // // Which will be optimized by simplify pass
      // // Replace the loop body with the new body
      // for (auto cond : conditions) {
      //   body = IfThenElse(cond, body);
      // }
      // for_node.CopyOnWrite()->body = body;
      return std::move(for_node);
    }

    // Visit a For Node
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Stmt VisitStmt_(const BlockNode *op) final {
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kSafeValueMap)) {
      auto map = op->annotations.Get(attr::kSafeValueMap)
                     ->as<Map<Var, PrimExpr>>()
                     .value();
      for (const auto &[var, safe_value] : map) {
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block "
            << buffer_data_to_buffer_;
        auto buffer = buffer_data_to_buffer_[var];
        annotated_safe_value_map_.Set(buffer, safe_value);
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  static bool HasInnerLoop(const Stmt &stmt) {
    LeafForFinder finder;
    finder(stmt);
    return !finder.leaf_for_nodes.empty();
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, PrimExpr> annotated_safe_value_map_;
};

// Create a pass that legalizes vectorized loops in the IRModule
tvm::transform::Pass LegalizeSafeMemoryAccess() {
  using namespace tir::transform;
  // Define the transformation function to be applied
  auto pass_func = [=](PrimFunc f, const IRModule &m, PassContext ctx) {
    bool disable_safe_memory_legalize =
        ctx->GetConfig<Bool>(kDisableSafeMemoryLegalize, Bool(false)).value();
    if (disable_safe_memory_legalize) {
      return f;
    }
    return SafeMemoryLegalizer::Substitute(std::move(f));
  };
  // Create and return a PrimFunc pass with the transformation function
  return CreatePrimFuncPass(pass_func, 0, "tl.LegalizeSafeMemoryAccess", {});
}

// Register the pass globally so it can be used in the compilation pipeline
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LegalizeSafeMemoryAccess",
                        LegalizeSafeMemoryAccess);
});

} // namespace tl
} // namespace tvm