layout_reducer.cc 14.1 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*!
 * \file layout_reducer.cc
 *
 * Compute layout for local.reducer buffers and lower them to local.fragment.
 */

#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../layout/layout.h"
#include "../op/fill.h"
#include "../op/finalize_reducer.h"
#include "arith/ir_mutator_with_analyzer.h"
#include "layout_reducer.h"

namespace tvm {
namespace tl {

using namespace tir;
using namespace tir::transform;
using arith::IRMutatorWithAnalyzer;

/**
 * @brief Construct a ReducerInfoNode from textual op and replication
 * descriptors.
 *
 * Maps op_str to a ReducerOpType ("sum" → SUM, "max" → MAX, "min" → MIN) and
 * rep_str to a ReducerRepType ("all" → ALL, "none" → NONE).
 *
 * @param op_str String identifying the reducer operation.
 * @param rep_str String identifying the replication behavior.
 * @throws RuntimeError if op_str or rep_str is not one of the supported values
 * (triggers ICHECK).
 */
ReducerInfoNode::ReducerInfoNode(const String &op_str, const String &rep_str) {
  if (op_str == "sum")
    op = ReducerOpType::SUM;
  else if (op_str == "max")
    op = ReducerOpType::MAX;
  else if (op_str == "min")
    op = ReducerOpType::MIN;
  else
    ICHECK(false) << "Unrecognized reducer_info op: " << op_str;

  if (rep_str == "all")
    rep = ReducerRepType::ALL;
  else if (rep_str == "none")
    rep = ReducerRepType::NONE;
  else
    ICHECK(false) << "Unrecognized reducer_info rep: " << rep_str;
}

class ReducerLayoutAnnotator : public IRMutatorWithAnalyzer {
public:
private:
  /**
   * @brief Visit an attribute statement and capture the IterVar for
   * threadIdx.x.
   *
   * If the attribute key is `tir::attr::thread_extent` and the node is an
   * `IterVar` whose `thread_tag` equals `"threadIdx.x"`, this sets the
   * mutator's `thread_var_` to that IterVar (after asserting the iterator's
   * extent is an `IntImm`). The previous `thread_var_` is preserved and
   * restored after delegating to the base visitor. Delegates all traversal work
   * to `IRMutatorWithAnalyzer::VisitStmt_`.
   *
   * Side effects:
   * - Temporarily updates the member `thread_var_` during traversal of the
   * child statement so subsequent visitors can read the thread index IterVar.
   *
   * @return The possibly mutated statement returned by the base visitor.
   */
  Stmt VisitStmt_(const AttrStmtNode *op) final {
    auto prev_thread_var = thread_var_;
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    auto result = IRMutatorWithAnalyzer::VisitStmt_(op);
    thread_var_ = prev_thread_var;
    return result;
  }

  /**
   * @brief Visits a TIR Block node to collect reducer metadata and apply
   * discovered buffer layouts.
   *
   * This method:
   * - Extracts reducer information from the block's `attr::kReducerInfo`
   * annotation and populates the internal reducer_info_map_.
   * - Registers allocated buffers by mapping each buffer's data Var to its
   * Buffer in var_to_buffer_.
   * - Recursively visits and rewrites the block body via the base mutator.
   * - Merges any layouts accumulated in new_layout_map_ into the block's
   * `attr::kLayoutMap` annotation (creating or extending the annotation), then
   * clears new_layout_map_ for subsequent blocks.
   *
   * Side effects:
   * - Updates reducer_info_map_, var_to_buffer_, and may set the block-level
   * `kLayoutMap` annotation.
   * - Clears new_layout_map_ after merging.
   *
   * @param op The Block node being visited.
   * @return Stmt The potentially modified Block statement (as a Stmt).
   */
  Stmt VisitStmt_(const BlockNode *op) final {
    // Record annotations
    if (op->annotations.count(attr::kReducerInfo)) {
      auto map = op->annotations.Get(attr::kReducerInfo)
                     ->as<Map<Var, Map<String, String>>>();
      ICHECK(map) << "reducer_replication map is not defined";
      for (auto &&[var, rep] : map.value()) {
        reducer_info_map_.Set(
            var, ReducerInfo{rep.Get("op").value(), rep.Get("rep").value()});
      }
    }
    for (auto &&buffer : op->alloc_buffers) {
      var_to_buffer_.Set(buffer->data, buffer);
    }
    auto result = IRMutatorWithAnalyzer::VisitStmt_(op).as<Block>().value();
    // After iterating over the body, set all layout_map to block
    auto p_result = result.CopyOnWrite();
    auto layout_map = p_result->annotations.Get(attr::kLayoutMap)
                          ->as<Map<Var, Layout>>()
                          .value_or(Map<Var, Layout>());
    for (auto &&[k, v] : new_layout_map_)
      layout_map.Set(k, v);
    if (!layout_map.empty())
      p_result->annotations.Set(attr::kLayoutMap, layout_map);
    new_layout_map_.clear();
    return result;
  }

  /**
   * @brief Visit and possibly annotate a For node for reducer layout lowering.
   *
   * Visits a For node via the base mutator and, if the traversal is currently
   * inside a reduction region (tracked by inside_reducer_range_) and this is
   * the outermost loop of that region, annotates the loop with reducer
   * information and derives per-buffer layout fragments for each reducer
   * buffer.
   *
   * When annotating:
   * - Sets the block-level `attr::kReducerInfo` annotation to the current
   *   inside_reducer_range_ map on the loop.
   * - For each reducer buffer, reads the bound of `thread_var_` (requires the
   *   analyzer to have a const-int bound for it) and creates a Fragment:
   *   - If the reducer's replication type is ALL, creates a replication
   * fragment across the thread extent.
   *   - If the replication type is NONE, builds a flattened index expression
   *     across buffer indices, reduces it modulo the thread extent, adds the
   *     thread minimum offset, and uses that as the fragment index.
   * - Records the constructed Fragments into new_layout_map_ keyed by the
   *   buffer's data Var.
   *
   * Side effects:
   * - May set `attr::kReducerInfo` on the For node's annotations.
   * - Updates `new_layout_map_`.
   * - Reads and relies on `thread_var_`, `analyzer_->const_int_bound`, and
   *   `var_to_buffer_`.
   *
   * Preconditions and checks:
   * - `thread_var_` must be defined and have a constant-int bound when
   * annotating.
   * - Each reducer Var in inside_reducer_range_ must map to an allocated Buffer
   * in var_to_buffer_ (ICHECK enforced).
   *
   * @param op The original For node being visited.
   * @return The (possibly) transformed For statement.
   */
  Stmt VisitStmt_(const ForNode *op) final {
    // only annotate the outermost loop
    bool should_annotate = false;
    if (!inside_reducer_range_.empty() && !already_annotated_ &&
        op->kind == ForKind::kParallel) {
      should_annotate = true;
      already_annotated_ = true;
    }

    auto opt_result = IRMutatorWithAnalyzer::VisitStmt_(op).as<For>();
    ICHECK(opt_result);
    auto result = opt_result.value();

    if (should_annotate) {
      // we are leaving the current loop nest. later ones may annotate again
      already_annotated_ = false;

      auto p_result = result.CopyOnWrite();
      p_result->annotations.Set(attr::kReducerInfo, inside_reducer_range_);

      // Iterate over local.reducer.* buffers, append to reducer_op_map_, set
      // layout by adding layout_map annotations, and convert scope to
      // local.fragment
      for (auto &&[reducer_var, info] : inside_reducer_range_) {
        // analyze thread index bound, need to be inside WS section
        ICHECK(thread_var_.defined());
        ICHECK(analyzer_->const_int_bound.IsBound(thread_var_->var));
        auto const_int_bound = analyzer_->const_int_bound(thread_var_);
        int thread_min = const_int_bound->min_value;
        int thread_extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;

        auto opt_buffer = var_to_buffer_.Get(reducer_var);
        ICHECK(opt_buffer);
        const auto &buffer = opt_buffer.value();
        Fragment f;
        if (info->rep == ReducerRepType::ALL) {
          f = Fragment(buffer->shape, {}, ReplicationPlaceholder(),
                       thread_extent, std::nullopt);
        } else if (info->rep == ReducerRepType::NONE) {
          PrimExpr flatten_idx = InputPlaceholder(0);
          for (int i = 1; i < buffer->shape.size(); ++i)
            flatten_idx = flatten_idx * buffer->shape[i] + InputPlaceholder(i);
          f = Fragment(buffer->shape, {},
                       indexmod(flatten_idx, thread_extent) + thread_min, 1,
                       std::nullopt);
        }
        new_layout_map_.Set(buffer->data, f);
      }
    }
    return result;
  }

  /**
   * @brief Handle BufferStore statements during IR mutation.
   *
   * This override is the visit hook for BufferStoreNode. Currently it delegates
   * to the base IRMutatorWithAnalyzer implementation. Intended as the place to
   * perform reducer-specific viability checks for stores (e.g., validating
   * operations against reducer metadata); such checks are TODO and are not yet
   * implemented.
   *
   * @return Stmt The (possibly transformed) statement returned by the base
   * mutator.
   */
  Stmt VisitStmt_(const BufferStoreNode *op) final {
    //! TODO: check store viable according to info->op
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  /**
   * @brief Processes Call expressions to track reducer ranges and finalize
   * reducer operations.
   *
   * Visits call nodes, detects T.fill calls that target reducer buffers and
   * records their reducer metadata in inside_reducer_range_ until the matching
   * T.finalize_reducer is seen. When a FinalizeReducerOp call is encountered,
   * this method appends the reducer operation enum value to the call arguments
   * and removes the corresponding entry from inside_reducer_range_.
   *
   * Side effects:
   * - Inserts and removes entries in inside_reducer_range_.
   * - Mutates the FinalizeReducerOp call by pushing the reducer op enum as an
   * extra argument.
   *
   * Failure modes:
   * - ICHECK fails if a T.fill targets a reducer already recorded in
   * inside_reducer_range_ (i.e., a prior T.fill without an intervening
   * T.finalize_reducer).
   * - ICHECK fails if T.finalize_reducer has no matching T.fill (no entry in
   * inside_reducer_range_).
   *
   * @param op_ The CallNode being visited.
   * @return PrimExpr The (possibly modified) call expression.
   */
  PrimExpr VisitExpr_(const CallNode *op_) final {
    auto op_ref = IRMutatorWithAnalyzer::VisitExpr_(op_).as<Call>().value();
    auto op = op_ref.CopyOnWrite();
    if (op->op.same_as(Fill::Get())) {
      ICHECK(!op->args.empty());
      if (auto arg0_call = op->args[0].as<Call>();
          arg0_call &&
          arg0_call.value()->op.same_as(builtin::tvm_access_ptr())) {
        ICHECK(arg0_call.value()->args.size() > 1);
        if (auto var = arg0_call.value()->args[1].as<Var>();
            var && reducer_info_map_.count(var.value())) {
          ICHECK(inside_reducer_range_.count(var.value()) == 0)
              << "T.fill on reducer must be enclosed with a T.finalize_reducer "
                 "before next.";
          inside_reducer_range_.Set(var.value(),
                                    reducer_info_map_.Get(var.value()).value());
        }
      }
    } else if (op->op.same_as(FinalizeReducerOp::Get())) {
      ICHECK(op->args.size() == 1);
      auto var = GetVarFromAccessPtr(op->args[0]);
      ICHECK(inside_reducer_range_.count(var) == 1)
          << "T.finalize_reducer must have a pairing T.fill ahead of it, "
             "enclosing a reduction range.";
      op->args.push_back((int)inside_reducer_range_.Get(var).value()->op);
      inside_reducer_range_.erase(var);
    }
    return op_ref;
  }

  /**
   * @brief Construct a ReducerLayoutAnnotator with an arithmetic analyzer.
   *
   * Initializes the annotator's base IRMutatorWithAnalyzer with the provided
   * arith::Analyzer, which the mutator uses to query symbolic bounds and
   * simplify integer expressions during layout inference.
   *
   * @param analyzer Pointer to an arith::Analyzer used for symbolic analysis.
   */
  ReducerLayoutAnnotator(arith::Analyzer *analyzer)
      : IRMutatorWithAnalyzer(analyzer) {}

  IterVar thread_var_;
  Map<Var, ReducerInfo> reducer_info_map_;
  Map<Var, ReducerInfo> inside_reducer_range_;
  bool already_annotated_ = false;
  Map<Var, Buffer> var_to_buffer_;
  Map<Var, Layout> new_layout_map_;

public:
  /**
   * @brief Apply reducer layout substitution to a PrimFunc.
   *
   * Runs the ReducerLayoutAnnotator over the function body to collect reducer
   * metadata, insert layout mappings for reducer buffers, and lower
   * local.reducer usage to local.fragment-compatible forms. Returns a new
   * PrimFunc whose body is the transformed IR.
   *
   * @param f The PrimFunc to transform; passed by value and returned with an
   * updated body.
   * @return PrimFunc The transformed PrimFunc with reducer layouts and related
   * rewrites applied.
   */
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    ReducerLayoutAnnotator substituter(&analyzer);
    PrimFuncNode *fptr = f.CopyOnWrite();
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }
};

/**
 * @brief Create a TVM transform pass that lowers local.reducer buffers to
 * local.fragment layouts.
 *
 * This pass runs ReducerLayoutAnnotator::Substitute on a PrimFunc to collect
 * reducer metadata, compute per-buffer layout fragments for reducer buffers,
 * and annotate blocks with the resulting layout map. It is exposed as a
 * PrimFunc-level pass named "tl.LayoutReducer".
 *
 * @return tvm::transform::Pass A prim-function pass that applies the
 * layout-reduction substitution.
 */
tvm::transform::Pass LayoutReducer() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return ReducerLayoutAnnotator::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutReducer", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutReducer", LayoutReducer);
});

} // namespace tl
} // namespace tvm