layout_inference.cc 31.8 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

#include <tvm/ffi/reflection/registry.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/index_map.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

#include "../layout/utils.h"
#include "../op/copy.h"
#include "../op/parallel.h"
#include "../op/region.h"

#include "arith/ir_mutator_with_analyzer.h"
#include "arith/ir_visitor_with_analyzer.h"
#include "common/loop_fusion_utils.h"
#include "common/loop_parallel_transform_utils.h"
#include "common/union_find.h"
#include "layout_reducer.h"
#include "loop_partition.h"
#include "loop_vectorize.h"
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

/*!
 * \brief collect the mapping from the buffer var to it allocated buffer
 */
class ThreadBindingCollector : public StmtExprVisitor {
public:
  void VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
    StmtExprVisitor::VisitStmt_(op);
  }

  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
};

using namespace tir;
using arith::IRMutatorWithAnalyzer;
using arith::IRVisitorWithAnalyzer;

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

class BufferUseDefCollector : public IRVisitorWithAnalyzer {
public:
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}

  using arith::IRVisitorWithAnalyzer::IRVisitorWithAnalyzer;

  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
                    std::queue<int> &q, std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
    auto buffer_oob = buffer_oob_vec_[cur_infer_id];
    // Double-check that 'next' is valid
    ICHECK(next.defined()) << "infer_list_[" << cur_infer_id
                           << "] is null inside run_infer_step.";

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
    DLOG(INFO) << "[RunInferStep] working on " << cur_infer_id << '\n';
    auto updates =
        next->InferLayout(LayoutInferArgs{target_, thread_bounds, layout_map,
                                          &analyzer_, buffer_oob},
                          level);
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      DLOG(INFO) << "    consider update " << buffer << " as "
                 << layout->DebugOutput() << '\n';

      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
          // `TileOperator`s.

          auto dst_layout_opt = layout.as<Fragment>();
          ICHECK(dst_layout_opt.has_value())
              << "Failed to cast layout to Fragment for buffer " << buffer
              << ", layout type is " << layout->GetTypeKey();
          const auto &dst_layout = dst_layout_opt.value();
          auto src_layout_opt = layout_map[buffer].as<Fragment>();
          ICHECK(src_layout_opt.has_value())
              << "Failed to cast layout_map[buffer] to Fragment for buffer "
              << buffer << ", layout type is "
              << layout_map[buffer]->GetTypeKey();
          const auto &src_layout = src_layout_opt.value();
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
            DLOG(INFO) << "    layout broadcast from "
                       << src_layout->DebugOutput() << ", accepted" << '\n';
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
        ICHECK(layout->IsEqual(layout_map[buffer].get()))
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
        DLOG(INFO) << "    new layout accepted" << '\n';
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

          if (!in_queue[idx] && idx != cur_infer_id) {
            in_queue[idx] = true;
            q.push(idx);
          }
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
                        const LayoutMap &strict_layout_map, std::queue<int> &q,
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
    while (!q.empty()) {
      int cur_infer_id = q.front();
      q.pop();
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

  LayoutInferenceResult Run() {
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
    ICHECK_EQ(buffer_oob_vec_.size(), infer_list_.size())
        << "Size mismatch: buffer_oob_vec_ and infer_list_ must match in "
           "length.";

    DLOG(INFO) << "[InferLayout] all participating operators:" << '\n';
    for (int i = 0; i < infer_list_stmt_.size(); ++i) {
      DLOG(INFO) << "    op " << i << ":" << infer_list_stmt_[i] << '\n';
    }

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
    Map<Buffer, Layout> strict_layout_map;
    int num_infer = infer_list_.size();

    // Prepare BFS queue for iterative inference
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
      ICHECK(infer_list_[i].defined())
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
      q.push(i);
    }

    // step 1: infer strict layout
    for (int i = 0; i < num_infer; i++) {
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
    }

    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

    // step 2: infer common layout with BFS
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);

    // step 3: relax constraints to free and re-run
    InferInFreeMode(layout_map, strict_layout_map);

    // Check that all local.fragment buffers have inferred layouts
    for (const auto &[buffer, _] : use_list_) {
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
    }

    // Collect layout info for For nodes
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
      TileOperator base_infer = std::move(infer_list_[i]);
      auto thread_var = thread_var_vec_[i];

      // Check if base_infer is valid
      ICHECK(base_infer.defined()) << "Null pointer encountered in "
                                      "infer_list_ while collecting for_map.";
      if (auto for_infer = base_infer.as<ParallelOpNode>()) {
        // Check that the loop layout is defined
        ICHECK(for_infer->GetLoopLayout().defined())
            << "The Layout for Parallel for cannot be inferred correctly:\n"
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
        // thread_var_ should be defined if we rely on it
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";

        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
        }
      }
    }

    return {layout_map, for_map, predicate_map};
  }

  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
    target_ = target.value();
    this->operator()(f->body);
  }

private:
  void VisitExpr_(const CallNode *op) final {
    IRVisitorWithAnalyzer::VisitExpr_(op);
    // Do not analysis the call node to the global function.
    if (op->op.as<GlobalVarNode>())
      return;

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
    if (p.defined()) {
      for (const auto &arg : op->args) {
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
      // Compute thread_var_ and thread_bounds_
      thread_var_vec_.push_back(thread_var_);
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
        auto extent = max_value - min_value + 1;
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
            IntImm(dtype, min_value), IntImm(dtype, extent)));
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }

      // Compute buffer oob for each buffer in the op
      if (const auto *copy = p.as<CopyNode>()) {
        auto src_tensor = copy->src;
        auto dst_tensor = copy->dst;
        auto src_range = copy->src_range;
        auto dst_range = copy->dst_range;
        bool src_oob = false;
        bool dst_oob = false;
        for (size_t i = 0; i < src_range.size(); i++) {
          if (!analyzer_.CanProve(src_range[i]->min + src_range[i]->extent <=
                                      src_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            src_oob = true;
            break;
          }
        }
        for (size_t i = 0; i < dst_range.size(); i++) {
          if (!analyzer_.CanProve(dst_range[i]->min + dst_range[i]->extent <=
                                      dst_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            dst_oob = true;
            break;
          }
        }
        buffer_oob_vec_.push_back(src_oob || dst_oob);
      } else {
        buffer_oob_vec_.push_back(false);
      }

      // Add the tile operator to infer_list_
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
      infer_list_.push_back(std::move(p));
    }
  }

  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
    auto call = expr.as<CallNode>();
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
      auto var_opt = call->args[1].as<Var>();
      if (!var_opt.has_value()) {
        DLOG(WARNING) << "[getBufferFromAccessPtr] args[1] is not a Var, type: "
                      << call->args[1]->GetTypeKey();
        return std::nullopt;
      }
      const auto &var = var_opt.value();
      return buffer_data_to_buffer_[var];
    } else if (call->op.same_as(RegionOp::Get())) {
      return call->args[0].as<BufferLoadNode>()->buffer;
    }
    return std::nullopt;
  }

  void addToUseList(const Buffer &buffer) {
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

  void VisitStmt_(const ForNode *op) final {
    if (op->kind == ForKind::kParallel) {
      auto infer = ParallelOp(GetRef<For>(op));
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
        addToUseList(buffer);
      }
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
        thread_bounds_vec_.push_back(Range::FromMinExtent(
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
      buffer_oob_vec_.push_back(false);
    } else {
      IRVisitorWithAnalyzer::VisitStmt(op->body);
    }
  }

  void VisitStmt_(const BlockNode *op) final {
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
      // Check if the layout map is Map<Var, Layout>
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  void VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  std::vector<ObjectRef> infer_list_stmt_;
  std::vector<TileOperator> infer_list_;
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
  std::vector<IterVar> thread_var_vec_;
  std::vector<Range> thread_bounds_vec_;
  std::vector<bool> buffer_oob_vec_;
  Target target_;
  LayoutMap annotated_layout_map_;
  bool skip_thread_partition_{false};

  std::vector<TileOperator> BackupInferList() {
    std::vector<TileOperator> back_infer_list;
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {

    DLOG(INFO) << "Enforced layout maps:" << '\n';
    for (auto &&[k, v] : layout_map) {
      DLOG(INFO) << "    " << k << ": " << v->DebugOutput() << '\n';
    }
    DLOG(INFO) << '\n';

    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

      // Union all infer_list_ indices that share the same buffer
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
    // Create a map from root to buffers
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }
    // Keep components_buffers for debug purpose
    (void)components_buffers;

    // For each component, try each op as root, and determine the least
    // replicated one
    std::queue<int> q;
    std::vector<bool> in_queue(infer_list_.size(), false);

    for (auto &&[root, members] : components) {
      DLOG(INFO) << "======================= processing component " << root
                 << '\n';
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
      int min_reg_num_infer_root = -1;

      // Try each member as the root of inference for this component
      for (int attempt_infer_root : members) {
        DLOG(INFO) << "----------------------- try root " << attempt_infer_root
                   << '\n';
        // Backup the current infer_list_ state
        auto back_infer_list = BackupInferList();
        // Copy the current layout_map for temporary use
        LayoutMap tmp_layout_map = layout_map;
        bool do_update = true;
        try {
          // Run inference starting from attempt_infer_root
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);

          // After the first search, run inference for all other members in
          // order
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
        } catch (const LayoutConflictException &e) {
          do_update = false;
          DLOG(INFO) << "attempt failed due to LayoutConflictException "
                     << e.what() << '\n';
        } catch (const NormalizeIterException &e) {
          do_update = false;
          DLOG(INFO) << "attempt failed due to NormalizeIterException "
                     << e.what() << '\n';
        }

        if (do_update) {
          // Compute the total register number for this layout
          int64_t reg_num = 0;
          for (const auto &[buffer, layout] : tmp_layout_map) {
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
                ICHECK(pci != nullptr);
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
          // Update the best plan if this one uses fewer registers
          if (reg_num < min_reg_num) {
            best_infer_list =
                BackupInferList(); // Use backup to avoid moving out infer_list_
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
            min_reg_num_infer_root = attempt_infer_root;
          }
        }
        // Restore infer_list_ state for the next attempt
        infer_list_ = std::move(back_infer_list);
      }
      ICHECK(min_reg_num < INT64_MAX) << "no available layout found" << '\n';
      // Apply the best plan for this component
      infer_list_ = std::move(best_infer_list);
      layout_map = best_layout_map;
      DLOG(INFO) << "[InferInFreeMode] Final selection is attempt_infer_root = "
                 << min_reg_num_infer_root << '\n';
    }
  }
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
public:
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
    arith::Analyzer analyzer;
    PrimFuncNode *fptr = f.CopyOnWrite();
    fptr->body = ParallelLoopFuser::Fuse(f->body);
    BufferUseDefCollector collector(skip_thread_partition);
    collector.Collect(f);
    auto result = collector.Run();
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

private:
  LayoutInferencer(const LayoutInferenceResult &result,
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition) {};

  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  /**
   * @brief Visit and mutate a Block node to attach inferred layout information.
   *
   * Converts the visited Block via the base visitor, asserts that every buffer
   * allocated with scope "local.framgent" has an inferred layout in
   * result_.layout_map, and attaches result_.layout_map to the Block's
   * annotations under attr::kLayoutMap.
   *
   * If any "local.framgent" buffer lacks an entry in result_.layout_map an
   * ICHECK will fail with the offending buffer printed.
   *
   * @return Stmt The (possibly modified) Block statement with the layout-map
   * annotation set.
   */
  Stmt VisitStmt_(const BlockNode *op) final {
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

  /**
   * @brief Visit and transform For nodes according to inferred layout
   * information.
   *
   * If the For node is present in result_.for_map, this method applies
   * loop-level layout-driven transformations: it optionally partitions the loop
   * across the thread index, vectorizes the loop body, and wraps the loop with
   * a predicate if one was inferred for the loop root.
   *
   * Detailed behavior:
   * - Reads reducer information from the For node's attr::kReducerInfo
   * annotation (if present) to detect reduction targets.
   * - Detects register-local buffer stores (buffers with scope "local") in the
   *   original loop body; if only register-local stores are present the loop is
   *   treated as a register-local scenario and is not partitioned across
   * threads.
   * - Obtains the loop layout from result_.for_map[root] and, unless the loop
   * is register-local or skip_thread_partition_ is set, partitions the loop via
   *   PartitionLoop using thread_var_ and analyzer_.
   * - Scans the transformed loop body to determine whether it accesses any
   *   non-local buffers (scopes other than "local" or "local.fragment").
   * - Scans the transformed loop body to detect reducers (based on
   * reducer_info). If a reducer is present the loop is NOT vectorized
   * (reduction axes are excluded from vectorization as a conservative
   * workaround).
   * - If the loop has non-local accesses and no reducer, the loop is vectorized
   *   via VectorizeLoop.
   * - If a predicate exists in result_.predicate_map for the loop root and the
   *   loop was partitioned, the method returns an IfThenElse surrounding the
   *   (possibly partitioned/vectorized) loop with that predicate; otherwise it
   *   returns the transformed For.
   *
   * @return The possibly transformed For statement (or an IfThenElse wrapping
   * it)
   */
  Stmt VisitStmt_(const ForNode *op) final {
    Map<Var, ReducerInfo> reducer_info;
    if (op->annotations.count(attr::kReducerInfo))
      reducer_info = op->annotations.Get(attr::kReducerInfo)
                         ->as<Map<Var, ReducerInfo>>()
                         .value();

    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      bool store_into_local = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            store_into_local = true;
          }
          // if the case is like:
          // for i in T.Parallel(1024):
          //     A_local[i] = B_global[i]
          //     A_frag[i] = A_global[i]
          // exception will be raise in Parallel::LayoutInference
        }
      });
      // This check if for the loop that only manuplates "local" buffers,
      // for i in T.Parallel(1024):
      //     A_local[i] = B_local[i]
      // Though this might be illegal
      // We use PostOrderVisit to detect whether the loop only manuplates
      // "local" buffers, which indicates register usage and justifies skipping
      // thread binding.
      bool local_register_only = true;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() != "local") {
            local_register_only = false;
          }
        } else if (const auto *load = obj.as<BufferLoadNode>()) {
          if (load->buffer.scope() != "local") {
            local_register_only = false;
          }
        }
      });

      auto loop_layout = result_.for_map[root];
      // FIXME: tell in-Parallel and out-of-Parallel `local`s apart
      // NOTE(lei): a bit ugly, we should rethink about this part in future.
      bool parallel_loop =
          !skip_thread_partition_ && !local_register_only && !store_into_local;

      if (parallel_loop) {
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
      // If none thread bindings are provided, partition the loop
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });
      // Workaround: if reducer is presented, don't vectorize loop
      // Best solution should be isolate reduction axis out of vectorization
      bool has_reducer = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (!has_reducer)
          if (const auto *store = obj.as<BufferStoreNode>()) {
            has_reducer = reducer_info.count(store->buffer->data) != 0;
          }
      });

      if (has_non_local && !has_reducer) {
        for_node = VectorizeLoop(for_node);
      }

      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
      } else {
        return for_node;
      }
    }
    return for_node;
  }

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

private:
  const LayoutInferenceResult result_;
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
  bool skip_thread_partition_{false};
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
    ThreadBindingCollector collector;
    collector(f->body);
    bool has_thread_binding = !collector.thread_binding_.empty();
    bool skip_thread_partition = !has_thread_binding;
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
});

} // namespace tl
} // namespace tvm