inject_assumes.cc 4.88 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

#include "tvm/arith/analyzer.h"
#include "tvm/ffi/optional.h"
#include "tvm/ir/expr.h"
#include "tvm/ir/transform.h"
#include "tvm/node/structural_hash.h"
#include "tvm/tir/builtin.h"
#include "tvm/tir/expr.h"
#include "tvm/tir/stmt.h"
#include "tvm/tir/stmt_functor.h"
#include "tvm/tir/transform.h"
#include <sstream>

namespace tvm::tl {
using namespace tir;

class AssumeInjector : public tvm::tir::StmtExprMutator {
  using Base = tvm::tir::StmtExprMutator;

public:
  AssumeInjector(PrimFunc f) : f(f) {}
  static PrimFunc Substitute(PrimFunc f) {
    auto injector = AssumeInjector(f);
    f.CopyOnWrite()->body = injector(f->body);
    return f;
  }

private:
  struct AssertCreator {
    struct Item {
      PrimExpr expr;
      std::vector<Buffer> buffers;
    };
    tvm::StructuralHash sh;
    tvm::StructuralEqual se;
    // grouped by expr, since the amount of variadic shape symbols is usually
    // much smaller than buffer
    std::vector<Item> items;
    // hash => index in items
    std::unordered_map<size_t, std::vector<size_t>> buckets;
    void addExpr(PrimExpr e, Buffer buffer) {
      size_t h = sh(e);
      auto &bucket = buckets[h];
      auto it = std::find_if(bucket.begin(), bucket.end(), [&](size_t y) {
        return se(e, items[y].expr, true);
      });
      if (it == bucket.end()) {
        auto index = items.size();
        items.push_back({e, {buffer}});
        bucket.push_back(index);
      } else {
        items[*it].buffers.push_back(buffer);
      }
    }
    void addBuffer(Buffer buf) {
      for (auto shape : buf->shape) {
        if (shape->IsInstance<IntImmNode>())
          continue;
        addExpr(shape, buf);
      }
    }
    Stmt build(Stmt body) {
      auto analyzer = arith::Analyzer{};
      for (const auto &e : items) {
        auto simplified = analyzer.Simplify(GT(e.expr, 0));
        std::stringstream ss;
        ss << "Buffer shape should be greater than 0: shape `" << e.expr
           << "` from buffer ";
        for (size_t i = 0; i < e.buffers.size(); i++) {
          if (i)
            ss << ", ";
          ss << "`" << e.buffers[i]->name << "`";
        }
        body = AttrStmt(simplified, tir::attr::tilelang_assume,
                        StringImm(ss.str()), body);
      }
      return body;
    }
  };
  Stmt VisitStmt_(const DeclBufferNode *op) final {
    auto body = VisitStmt(op->body);
    AssertCreator c;
    c.addBuffer(op->buffer);
    return DeclBuffer(op->buffer, c.build(body), op->span);
  }
  std::optional<PrimExpr> getAssumeExpr(Stmt stmt) {
    auto eval = stmt.as<EvaluateNode>();
    if (!eval)
      return std::nullopt;
    auto call = eval->value.as<CallNode>();
    if (!call)
      return std::nullopt;
    if (!call->op.same_as(builtin::assume()))
      return std::nullopt;
    return call->args[0];
  }
  Stmt VisitStmt_(const SeqStmtNode *op) final {
    struct AssumeGroup {
      std::optional<PrimExpr> e;
      std::vector<Stmt> stmts;
    };
    std::vector<AssumeGroup> groups = {AssumeGroup{std::nullopt, {}}};
    for (auto i = 0; i < op->seq.size(); i++) {
      auto stmt = VisitStmt(op->seq[i]);
      if (auto e = getAssumeExpr(stmt)) {
        groups.push_back(AssumeGroup{*e, {}});
      } else {
        groups.back().stmts.push_back(stmt);
      }
    }
    for (size_t i = groups.size(); i--;) {
      auto &g = groups[i];
      if (g.e) {
        Stmt body = g.stmts.size() == 1 ? g.stmts[0] : SeqStmt(g.stmts);
        std::stringstream ss;
        ss << "Assume: " << *(g.e);
        AttrStmt attr = AttrStmt(*g.e, tir::attr::tilelang_assume,
                                 StringImm(ss.str()), body);
        groups[i - 1].stmts.push_back(attr);
      } else {
        ICHECK(i == 0) << "only the first group can have no assume";
      }
    }
    return groups[0].stmts.size() == 1 ? groups[0].stmts[0]
                                       : SeqStmt(groups[0].stmts);
    // return SeqStmt(groups[0].stmts);
  }
  Stmt VisitStmt_(const BlockNode *op) final {
    auto body = VisitStmt(op->body);
    AssertCreator c;
    if (root_node) {
      for (auto item : f->buffer_map) {
        c.addBuffer(item.second);
      }
    }
    for (auto item : op->alloc_buffers) {
      c.addBuffer(item);
    }
    for (auto item : op->match_buffers) {
      c.addBuffer(item->buffer);
    }
    return Block(op->iter_vars, op->reads, op->writes, op->name_hint,
                 c.build(body), op->init, op->alloc_buffers, op->match_buffers,
                 op->annotations, op->span);
  }
  PrimFunc f;
  bool root_node{true};
};

using namespace tir::transform;

tvm::transform::Pass InjectAssumes() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return AssumeInjector::Substitute(f);
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.InjectAssumes", {});
}

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.InjectAssumes", InjectAssumes);
});

} // namespace tvm::tl