gemm_py.cc 10.7 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*!
 * \file tl/op/gemm_py.cc
 * \brief Implementation of General Matrix Multiplication (GEMM) operators
 */

#include "gemm_py.h"

#include "builtin.h"
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
#include <tvm/tir/transform.h>

#include "../target/utils.h"
#include "tvm/ffi/string.h"

namespace tvm {
namespace tl {

using namespace tir;

/**
 * @brief Construct a Gemm operator from serialized TL arguments and a buffer
 * map.
 *
 * This constructor deserializes operator parameters from `args` and resolves
 * buffer references via `vmap`, populating an internal GemmPyNode with:
 * - device pointers for A, B, C and their corresponding Buffer objects,
 * - transpose flags for A and B,
 * - matrix dimensions M, N, K,
 * - warp allocation policy and clear_accum flag,
 * - strides and memory offsets for A and B,
 * - optional kPack (must be 1 or 2) and optional wg_wait.
 *
 * The populated GemmPyNode is stored into the wrapper's internal `data_`.
 *
 * @param args Positional serialized arguments produced by the TL frontend:
 *   expected layout is:
 *     [Aptr, Bptr, Cptr, trans_A (Bool), trans_B (Bool),
 *      M (Int), N (Int), K (Int), policy (Int), clear_accum (Bool),
 *      stride_A (Int), stride_B (Int), offset_A (Int), offset_B (Int),
 *      (optional) kPack (Int), (optional) wg_wait (Int)]
 * @param vmap Mapping from access pointer vars to Buffer objects used to
 *   resolve the Buffer corresponding to each pointer argument.
 *
 * @note If `kPack` is provided it must be 1 or 2; otherwise the constructor
 *       fails with an ICHECK (runtime assertion). No other validation is
 *       performed here.
 */
GemmPy::GemmPy(Array<PrimExpr> args, BufferMap vmap) {
  ObjectPtr<GemmPyNode> node = make_object<GemmPyNode>();

  node->Aptr = args[0];
  node->Bptr = args[1];
  node->Cptr = args[2];
  node->A = vmap[GetVarFromAccessPtr(node->Aptr)];
  node->B = vmap[GetVarFromAccessPtr(node->Bptr)];
  node->C = vmap[GetVarFromAccessPtr(node->Cptr)];
  node->trans_A = args[3].as<Bool>().value();
  node->trans_B = args[4].as<Bool>().value();
  node->M = args[5].as<IntImm>().value()->value;
  node->N = args[6].as<IntImm>().value()->value;
  node->K = args[7].as<IntImm>().value()->value;
  node->policy = GemmWarpPolicy(args[8].as<IntImm>().value()->value);
  node->clear_accum = args[9].as<PrimExpr>().value();
  node->stride_A = args[10].as<IntImm>().value()->value;
  node->stride_B = args[11].as<IntImm>().value()->value;
  node->offset_A = args[12].as<IntImm>().value()->value;
  node->offset_B = args[13].as<IntImm>().value()->value;
  if (args.size() > 14) {
    node->kPack = args[14].as<IntImm>().value()->value;
    if (node->kPack != 1 && node->kPack != 2) {
      ICHECK(false) << "kPack must be 1 or 2";
    }
  }
  if (args.size() > 15) {
    node->wg_wait = args[15].as<IntImm>().value()->value;
  }
  data_ = std::move(node);
}

/**
 * @brief Create a copy of this GemmPyNode as a TileOperator.
 *
 * Constructs a new GemmPyNode by copying the current node state and returns it
 * wrapped in a Gemm TileOperator.
 *
 * @return TileOperator A Gemm operator that owns a copy of this node.
 */
TileOperator GemmPyNode::Clone() const {
  auto op = make_object<GemmPyNode>(*this);
  return GemmPy(op);
}

GemmInst GemmPyNode::GetGemmInst(int block_size, Target target) const {
  int warp_size = TargetGetWarpSize(target);
  int num_warps = block_size / warp_size;
  bool allow_wgmma = TargetIsHopper(target) && (this->M >= 64) &&
                     (num_warps % 4 == 0) && CheckWGMMA();
  if (allow_wgmma) {
    return GemmInst::kWGMMA;
  } else if (TargetIsCDNA(target)) {
    return GemmInst::kMFMA;
  } else if (TargetIsCuda(target)) {
    return GemmInst::kMMA;
  } else {
    ICHECK(0) << "Unsupported target for gemm: " << target->str();
    return GemmInst::kMMA; // This line will never be reached due to ICHECK, but
                           // satisfies compiler
  }
}

/**
 * @brief Checks whether WGMMA (warp-group MMA) can be used for this GEMM.
 *
 * Evaluates device-memory placement, data-type combinations, transpose flags,
 * and K divisibility constraints required for the Hopper WGMMA code path.
 *
 * The check returns true only when:
 * - B resides in shared memory ("shared" or "shared.dyn"); and
 * - (C, A, B) dtypes match one of the supported combinations below and K
 *   satisfies the required alignment; and
 * - for combinations that require specific orientations, A is not transposed
 *   and B is transposed.
 *
 * Supported combinations and constraints:
 * - C=float16:
 *   - A=float16, B=float16: K % 16 == 0
 *   - Various float8 mixes (e4m3/e5m2): require (!trans_A && trans_B) and K %
 * 32 == 0
 * - C=float32:
 *   - A=float16, B=float16: K % 16 == 0
 *   - A=bfloat16, B=bfloat16: K % 16 == 0
 *   - A=float32, B=float32: require (!trans_A && trans_B) and K % 8 == 0
 *   - Various float8 mixes: require (!trans_A && trans_B) and K % 32 == 0
 * - C=int32:
 *   - 8-bit integer combinations (Int8/UInt8): require (!trans_A && trans_B)
 * and K % 32 == 0
 *
 * @return true if WGMMA is supported for the current buffers, dtypes, and
 *         transpose/shape constraints; false otherwise.
 */
bool GemmPyNode::CheckWGMMA() const {
  if (B.scope() != "shared.dyn" && B.scope() != "shared") {
    return false;
  }

  if (C->dtype == DataType::Float(16)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Float(32)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::BFloat(16) &&
             B->dtype == DataType::BFloat(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::Float(32) && B->dtype == DataType::Float(32))
      return (!trans_A) && trans_B && K % 8 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Int(32)) {
    if (A->dtype == DataType::Int(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::Int(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else {
    return false;
  }
}

/**
 * @brief Parse and return the numeric GPU architecture from a Target's "arch"
 * attribute.
 *
 * Examines the target's "arch" string and, if it matches the pattern
 * "sm_<num>", returns <num> as an int. If the attribute is present but does not
 * match that pattern, returns 0.
 *
 * Preconditions: the target must have an "arch" attribute (this is checked via
 * ICHECK).
 *
 * @return int The parsed architecture number (e.g., 80 for "sm_80"), or 0 if
 * the arch string does not match "sm_<num>".
 */
static int GetArchInt(Target target) {
  int arch_int = 0;
  auto s = target->GetAttr<String>("arch");
  ICHECK(s.defined());
  std::string arch = s.value();
  if (arch.rfind("sm_", 0) == 0) {
    arch_int = std::stoi(arch.substr(3));
  } else {
    arch_int = 0;
  }
  return arch_int;
}

Stmt GemmPyNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
  auto block_size = *as_const_int(T.thread_bounds->extent);
  GemmInst gemm_inst = GetGemmInst(block_size, T.target);

  auto [warp_m, warp_n] =
      policy->ComputeWarpPartition(M, N, block_size, T.target, gemm_inst);

  if (const auto f = ffi::Function::GetGlobal("tl.gemm_py.lower")) {
    auto prim_func =
        Downcast<PrimFunc>((*f)(GetRef<GemmPy>(this), T.layout_map, T.target,
                                T.thread_bounds, T.thread_var));
    ICHECK(prim_func->attrs.defined());
    auto global_symbol = prim_func->attrs.GetAttr<String>("global_symbol");
    ICHECK(global_symbol.defined());
    if (prim_func->body.as<BlockRealizeNode>()) {
      BlockRealize block_realize = Downcast<BlockRealize>(prim_func->body);
      auto block = block_realize->block;
      {
        BlockNode *n = block.CopyOnWrite();
        n->name_hint = global_symbol.value();
      }
      return BlockRealize(block_realize->iter_values, block_realize->predicate,
                          block);
    }
    // warp with block realize node
    return BlockRealize(
        /*iter_values=*/Array<PrimExpr>(),
        /*predicate=*/const_true(),
        /*block=*/
        Block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
              /*name_hint=*/global_symbol.value(), prim_func->body));
  } else {
    LOG(FATAL) << "No lower function found for gemm_py";
    return Stmt(); // This line will never be reached due to LOG(FATAL), but
                   // satisfies compiler
  }
}

LayoutMap GemmPyNode::InferLayout(const LayoutInferArgs &T,
                                  InferLevel level) const {
  if (completed_)
    return {};
  LayoutMap results;

  if (const auto f = ffi::Function::GetGlobal("tl.gemm_py.infer_layout")) {
    results = Downcast<LayoutMap>(
        (*f)(GetRef<GemmPy>(this), T.target, T.thread_bounds));
  } else {
    LOG(FATAL) << "No infer layout function found for gemm_py";
  }

  completed_ = true;
  return results;
}

TIR_REGISTER_TL_OP(GemmPy, gemm_py)
    .set_num_inputs(5)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));

TVM_FFI_STATIC_INIT_BLOCK({ GemmPyNode::RegisterReflection(); });

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.GemmPyGemmInst",
                        [](GemmPy gemm_py, int block_size, Target target) {
                          return gemm_py->GetGemmInst(block_size, target);
                        });
});

} // namespace tl
} // namespace tvm