gemm.cc 33.6 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*!
 * \file tl/op/gemm.cc
 * \brief Implementation of General Matrix Multiplication (GEMM) operators
 */

#include "gemm.h"

#include "builtin.h"
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
#include <tvm/tir/transform.h>

#include "../target/utils.h"

namespace tvm {
namespace tl {

using namespace tir;

struct TCGEN5MMAMeta {
  int atom_m, atom_n, atom_k;
};

// Return {is_success, meta}
static inline std::pair<bool, TCGEN5MMAMeta>
GetTCGEN5MMAMeta(int M, int N, int K, DataType ab_dtype, DataType c_dtype) {
// TODO (lei) Currently not all shapes / dtypes are supported for TCGEN5MMA.
#define FAIL                                                                   \
  return { false, TCGEN5MMAMeta{0, 0, 0} }
#define SUCCESS(atom_m, atom_n, atom_k)                                        \
  return {                                                                     \
    true, TCGEN5MMAMeta { atom_m, atom_n, atom_k }                             \
  }
  std::vector<int> ws_valid_atom_ns = {256, 128, 64};
  if ((ab_dtype.is_bfloat16() || ab_dtype.is_float16()) &&
      (c_dtype.is_float() && c_dtype.bits() == 32)) {
    if (K % 16 != 0)
      FAIL;
    if (M % 128 == 0) {
      for (int atom_n = 256; atom_n >= 16; atom_n -= 16)
        if (N % atom_n == 0)
          SUCCESS(128, atom_n, 16);
      FAIL;
    } else if (M % 64 == 0) {
      for (int atom_n : ws_valid_atom_ns)
        if (N % atom_n == 0)
          SUCCESS(64, atom_n, 16);
      FAIL;
    } else if (M % 32 == 0) {
      for (int atom_n : ws_valid_atom_ns)
        if (N % atom_n == 0)
          SUCCESS(32, atom_n, 16);
      FAIL;
    } else {
      FAIL;
    }
  } else if ((ab_dtype.is_float8_e4m3fn() || ab_dtype.is_float8_e5m2()) &&
             (c_dtype.is_float() && c_dtype.bits() == 32)) {
    if (K % 32 != 0)
      FAIL;
    if (M % 128 == 0) {
      for (int atom_n = 256; atom_n >= 16; atom_n -= 16)
        if (N % atom_n == 0)
          SUCCESS(128, atom_n, 32);
      FAIL;
    } else if (M % 64 == 0) {
      for (int atom_n : ws_valid_atom_ns)
        if (N % atom_n == 0)
          SUCCESS(64, atom_n, 32);
      FAIL;
    } else if (M % 32 == 0) {
      for (int atom_n : ws_valid_atom_ns)
        if (N % atom_n == 0)
          SUCCESS(32, atom_n, 32);
      FAIL;
    } else {
      FAIL;
    }
  }
  FAIL;
#undef FAIL
#undef SUCCESS
}

/**
 * @brief Construct a Gemm operator from serialized TL arguments and a buffer
 * map.
 *
 * This constructor deserializes operator parameters from `args` and resolves
 * buffer references via `vmap`, populating an internal GemmNode with:
 * - device pointers for A, B, C and their corresponding Buffer objects,
 * - transpose flags for A and B,
 * - matrix dimensions M, N, K,
 * - warp allocation policy and clear_accum flag,
 * - strides and memory offsets for A and B,
 * - optional kPack (must be 1 or 2) and optional wg_wait.
 *
 * The populated GemmNode is stored into the wrapper's internal `data_`.
 *
 * @param args Positional serialized arguments produced by the TL frontend:
 *   expected layout is:
 *     [Aptr, Bptr, Cptr, trans_A (Bool), trans_B (Bool),
 *      M (Int), N (Int), K (Int), policy (Int), clear_accum (Bool),
 *      stride_A (Int), stride_B (Int), offset_A (Int), offset_B (Int),
 *      (optional) kPack (Int), (optional) wg_wait (Int)]
 * @param vmap Mapping from access pointer vars to Buffer objects used to
 *   resolve the Buffer corresponding to each pointer argument.
 *
 * @note If `kPack` is provided it must be 1; otherwise the constructor
 *       fails with an ICHECK (runtime assertion). No other validation is
 *       performed here.
 */
Gemm::Gemm(Array<PrimExpr> args, BufferMap vmap) {
  ObjectPtr<GemmNode> node = make_object<GemmNode>();

  node->Aptr = args[0];
  node->Bptr = args[1];
  node->Cptr = args[2];
  node->A = vmap[GetVarFromAccessPtr(node->Aptr)];
  node->B = vmap[GetVarFromAccessPtr(node->Bptr)];
  node->C = vmap[GetVarFromAccessPtr(node->Cptr)];
  node->trans_A = args[3].as<Bool>().value();
  node->trans_B = args[4].as<Bool>().value();
  node->M = args[5].as<IntImm>().value()->value;
  node->N = args[6].as<IntImm>().value()->value;
  node->K = args[7].as<IntImm>().value()->value;
  node->policy = GemmWarpPolicy(args[8].as<IntImm>().value()->value);
  node->clear_accum = args[9].as<PrimExpr>().value();
  node->stride_A = args[10].as<IntImm>().value()->value;
  node->stride_B = args[11].as<IntImm>().value()->value;
  node->offset_A = args[12].as<IntImm>().value()->value;
  node->offset_B = args[13].as<IntImm>().value()->value;
  if (args.size() > 14) {
    node->kPack = args[14].as<IntImm>().value()->value;
    if (node->kPack != 1 && node->kPack != 2) {
      ICHECK(false) << "kPack must be 1 or 2";
    }
  }
  if (args.size() > 15) {
    node->wg_wait = args[15].as<IntImm>().value()->value;
  }
  node->mbarptr = args[16];
  if (node->mbarptr.as<CallNode>()) {
    node->mbar = vmap[GetVarFromAccessPtr(node->mbarptr)];
  } else {
    node->mbar = std::nullopt;
  }
  node->C_coords = Array<PrimExpr>(
      {args[17].as<PrimExpr>().value(), args[18].as<PrimExpr>().value()});
  data_ = std::move(node);
}

/**
 * @brief Create a copy of this GemmNode as a TileOperator.
 *
 * Constructs a new GemmNode by copying the current node state and returns it
 * wrapped in a Gemm TileOperator.
 *
 * @return TileOperator A Gemm operator that owns a copy of this node.
 */
TileOperator GemmNode::Clone() const {
  auto op = make_object<GemmNode>(*this);
  return Gemm(op);
}

bool GemmNode::AllowTCGEN5MMA(Target target) const {
  return TargetIsSm100(target) &&
         ((A.scope() == "shared.dyn" || A.scope() == "shared" ||
           A.scope() == "shared.tmem") &&
          (B.scope() == "shared.dyn" || B.scope() == "shared") &&
          C.scope() == "shared.tmem") &&
         GetTCGEN5MMAMeta(M, N, K, A->dtype, C->dtype).first;
}

bool GemmNode::AllowWGMMA(int block_size, Target target) const {
  tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();

  int warp_size = TargetGetWarpSize(target);
  int num_warps = block_size / warp_size;
  return !ctxt->GetConfig(kDisableWGMMA, Optional<Bool>()).value_or(false) &&
         TargetIsHopper(target) && (this->M >= 64) && (num_warps % 4 == 0) &&
         CheckWGMMA();
}

GemmInst GemmNode::GetGemmInst(int block_size, Target target) const {
  bool allow_tcgen5mma = AllowTCGEN5MMA(target);
  bool allow_wgmma = AllowWGMMA(block_size, target);
  if (allow_tcgen5mma) {
    return GemmInst::kTCGEN5MMA;
  } else if (allow_wgmma) {
    return GemmInst::kWGMMA;
  } else if (TargetIsCDNA(target)) {
    return GemmInst::kMFMA;
  } else if (TargetIsCuda(target)) {
    return GemmInst::kMMA;
  } else {
    ICHECK(0) << "Unsupported target for gemm: " << target->str();
  }
}

std::pair<int, int> GemmWarpPolicyNode::ComputeWarpPartition(
    int M, int N, int block_size, Target target, GemmInst gemm_inst) const {
  int num_warps = block_size / TargetGetWarpSize(target);
  if (gemm_inst == GemmInst::kTCGEN5MMA) {
    return {1, num_warps}; // TCGEN5MMA doesn't care about warp partitioning
  }

  int m_warp = 1, n_warp = 1;
  constexpr int kMPerWarp = 16; // Rows processed by a single warp
  constexpr int kNPerWarp = 8;  // Columns processed by a single warp
  ICHECK(M % kMPerWarp == 0)
      << "M must be divisible by " << kMPerWarp << ", but got " << M;
  ICHECK(N % kNPerWarp == 0)
      << "N must be divisible by " << kNPerWarp << ", but got " << N;

  if (gemm_inst == GemmInst::kWGMMA) {
    ICHECK(num_warps % 4 == 0) << "Warp-Group MMA requires 128×k threads.";

    constexpr int kGroup = 4; // Number of warps in a warp-group

    m_warp = kGroup; // Initially, only one warp-group on M dimension
    n_warp = num_warps / m_warp; // Rest all on N dimension

    if (this->isFullRow()) {
      // Try to put as many warp-groups as possible on M dimension
      // (decreasing multiples of 4, ensuring divisibility by M)
      for (int cand = num_warps; cand >= kGroup; cand -= kGroup) {
        if (M % (cand * kMPerWarp) == 0) {
          m_warp = cand;
          n_warp = num_warps / m_warp;
          break;
        }
      }
    } else if (this->isFullCol()) {
      // Try to use warps on N dimension; if N is not divisible, split excess
      // groups to M
      int cand_n = n_warp;                 // Initially assume all on N
      if (N % (cand_n * kNPerWarp) != 0) { // N direction division fails
        int max_n = N / kNPerWarp;
        // Find a feasible n_warp from max possible downwards, ensuring
        // num_warps/n_warp is multiple of 4
        for (int n = std::min(cand_n, max_n); n >= 1; --n) {
          if (num_warps % n == 0 && (num_warps / n) % kGroup == 0) {
            n_warp = n;
            m_warp = num_warps / n_warp;
            break;
          }
        }
      }
    } else if (this->isSquare()) {
      // Exhaustive search, but m must be multiple of 4
      int max_m = M / kMPerWarp;
      int max_n = N / kNPerWarp;

      float ideal = N > 0 ? static_cast<float>(M) / N : 1.f;

      float best_score = std::numeric_limits<float>::max();
      int best_m = kGroup, best_n = n_warp;

      for (int m = kGroup; m <= num_warps && m <= max_m; m += kGroup) {
        if (num_warps % m)
          continue;
        int n = num_warps / m;
        if (n > max_n)
          continue;

        float m_per_warp = static_cast<float>(M) / (m * kMPerWarp);
        float n_per_warp = static_cast<float>(N) / (n * kNPerWarp);
        float score = std::abs(m_per_warp / n_per_warp - ideal);

        if (score < best_score) {
          best_score = score;
          best_m = m;
          best_n = n;
        }
      }
      m_warp = best_m;
      n_warp = best_n;
    } else {
      ICHECK(0) << "Unknown GemmWarpPolicy";
    }

    ICHECK(m_warp * n_warp == num_warps)
        << "m_warp * n_warp must equal num_warps, m_warp: " << m_warp
        << ", n_warp: " << n_warp << ", num_warps: " << num_warps;

    // Store the computed values in the object's member variables
    this->m_warp = m_warp;
    this->n_warp = n_warp;

    return {m_warp, n_warp};
  }

  if (this->isFullRow()) {
    // Try to partition M first
    m_warp = num_warps;
    n_warp = 1;

    // If M cannot be evenly divided by m_warp*16, try to split remaining warps
    // to N
    if (M % (m_warp * kMPerWarp) != 0) {
      // Calculate how many warps we can use for M
      int max_m_warps = M / kMPerWarp;
      m_warp = max_m_warps;
      // Use remaining warps for N
      n_warp = num_warps / m_warp;
      if (n_warp == 0)
        n_warp = 1;
    }
  } else if (this->isFullCol()) {
    // Try to partition N first
    m_warp = 1;
    n_warp = num_warps;

    // If N cannot be evenly divided by n_warp*8, try to split remaining warps
    // to M
    if (N % (n_warp * kNPerWarp) != 0) {
      // Calculate how many warps we can use for N
      int max_n_warps = N / kNPerWarp;
      n_warp = max_n_warps;
      // Use remaining warps for M
      m_warp = num_warps / n_warp;
      if (m_warp == 0)
        m_warp = 1;
    }
  } else if (this->isSquare()) {
    // First calculate the maximum possible warps for each dimension
    int max_m_warps =
        M / kMPerWarp; // Each warp needs at least 16 elements in M

    // Calculate the ideal ratio of M/N warps based on the matrix dimensions
    float ideal_ratio = 1.0f;
    if (N > 0) {
      ideal_ratio = static_cast<float>(M) / N;
    }

    // Try to find the best balanced partition
    int best_m = 1;
    int best_n = 1;
    float best_balance = std::numeric_limits<float>::max();
    // Try all possible combinations that satisfy the constraints
    for (int m = 1; m <= max_m_warps && m <= num_warps; m++) {
      int n = num_warps / m;

      // Calculate how balanced this partition is
      float m_per_warp = static_cast<float>(M) / (m * kMPerWarp);
      float n_per_warp = static_cast<float>(N) / (n * kNPerWarp);
      // m_per_warp and n_per_warp must be greater than 1
      if (m_per_warp < 1 || n_per_warp < 1)
        continue;
      // m * n must equal num_warps
      if (m * n != num_warps)
        continue;

      float balance = std::abs(m_per_warp / n_per_warp - ideal_ratio);

      if (balance < best_balance) {
        best_balance = balance;
        best_m = m;
        best_n = n;
      }
    }

    m_warp = best_m;
    n_warp = best_n;
  } else {
    ICHECK(0) << "Unknown GemmWarpPolicy";
  }
  ICHECK(m_warp * n_warp == num_warps)
      << "m_warp * n_warp must equal num_warps, m_warp: " << m_warp
      << ", n_warp: " << n_warp << ", num_warps: " << num_warps;

  // Store the computed values in the object's member variables
  this->m_warp = m_warp;
  this->n_warp = n_warp;

  return {m_warp, n_warp};
}

/**
 * @brief Checks whether WGMMA (warp-group MMA) can be used for this GEMM.
 *
 * Evaluates device-memory placement, data-type combinations, transpose flags,
 * and K divisibility constraints required for the Hopper WGMMA code path.
 *
 * The check returns true only when:
 * - B resides in shared memory ("shared" or "shared.dyn"); and
 * - (C, A, B) dtypes match one of the supported combinations below and K
 *   satisfies the required alignment; and
 * - for combinations that require specific orientations, A is not transposed
 *   and B is transposed.
 *
 * Supported combinations and constraints:
 * - C=float16:
 *   - A=float16, B=float16: K % 16 == 0
 *   - Various float8 mixes (e4m3/e5m2): require (!trans_A && trans_B) and K %
 * 32 == 0
 * - C=float32:
 *   - A=float16, B=float16: K % 16 == 0
 *   - A=bfloat16, B=bfloat16: K % 16 == 0
 *   - A=float32, B=float32: require (!trans_A && trans_B) and K % 8 == 0
 *   - Various float8 mixes: require (!trans_A && trans_B) and K % 32 == 0
 * - C=int32:
 *   - 8-bit integer combinations (Int8/UInt8): require (!trans_A && trans_B)
 * and K % 32 == 0
 *
 * @return true if WGMMA is supported for the current buffers, dtypes, and
 *         transpose/shape constraints; false otherwise.
 */
bool GemmNode::CheckWGMMA() const {
  if (B.scope() != "shared.dyn" && B.scope() != "shared") {
    return false;
  }

  if (C->dtype == DataType::Float(16)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Float(32)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::BFloat(16) &&
             B->dtype == DataType::BFloat(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::Float(32) && B->dtype == DataType::Float(32))
      return (!trans_A) && trans_B && K % 8 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e4m3() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e4m3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype.is_float8_e5m2() && B->dtype.is_float8_e5m2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Int(32)) {
    if (A->dtype == DataType::Int(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::Int(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else {
    return false;
  }
}

/**
 * @brief Parse and return the numeric GPU architecture from a Target's "arch"
 * attribute.
 *
 * Examines the target's "arch" string and, if it matches the pattern
 * "sm_<num>", returns <num> as an int. If the attribute is present but does not
 * match that pattern, returns 0.
 *
 * Preconditions: the target must have an "arch" attribute (this is checked via
 * ICHECK).
 *
 * @return int The parsed architecture number (e.g., 80 for "sm_80"), or 0 if
 * the arch string does not match "sm_<num>".
 */
static int GetArchInt(Target target) {
  int arch_int = 0;
  auto s = target->GetAttr<String>("arch");
  ICHECK(s.defined());
  std::string arch = s.value();
  if (arch.rfind("sm_", 0) == 0) {
    arch_int = std::stoi(arch.substr(3));
  } else {
    arch_int = 0;
  }
  return arch_int;
}

/**
 * @brief Lower the GEMM operator to a TL TIR call expression.
 *
 * Constructs a tl::gemm call string parameterized by M, N, K, warp partition,
 * transpose flags, accumulation clearing, target-specific stride/offset/kPack
 * and optional workgroup wait value, then returns an Evaluate(call) node
 * invoking tl::tl_gemm with the composed string and the A/B/C buffer handles.
 *
 * @param T Contains lowering context including thread bounds and target.
 * @param analyzer Optional arithmetic analyzer used by lowering (may be
 * nullptr).
 * @return Stmt A TIR statement representing the evaluated TL GEMM call.
 */
Stmt GemmNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
  auto block_size = *as_const_int(T.thread_bounds->extent);
  GemmInst gemm_inst = GetGemmInst(block_size, T.target);
  auto [warp_m, warp_n] =
      policy->ComputeWarpPartition(M, N, block_size, T.target, gemm_inst);

  std::stringstream ss;
  std::string op_name;

  if (gemm_inst == GemmInst::kTCGEN5MMA) {
    auto [can_use_tcgen5mma, meta] =
        GetTCGEN5MMAMeta(M, N, K, A->dtype, C->dtype);
    ICHECK(can_use_tcgen5mma);
    ICHECK(B.scope() == "shared.dyn" || B.scope() == "shared");
    ICHECK(C.scope() == "shared.tmem");
    ICHECK(mbar.has_value()) << "mbar must be provided for TCGEN5MMA";
    if (A.scope() == "shared.tmem") {
      op_name = "tl::tcgen5mma_gemm_ts";
    } else if (A.scope() == "shared.dyn" || A.scope() == "shared") {
      op_name = "tl::tcgen5mma_gemm_ss";
    } else {
      ICHECK(0)
          << "Unsupported A scope for TCGEN5MMA: "
          << A.scope(); // If this is triggered, it means Tilelang has bugs.
    }
    ICHECK(wg_wait == -1)
        << "Currently only wg_wait == -1 is supported for TCGEN5MMA. Please "
           "use "
           "wg_wait = -1 and manually synchronize with mbarrier.";

    std::string accum_dtype = "";
    if (C->dtype.is_float()) {
      if (C->dtype.bits() == 32) {
        accum_dtype = "float";
      }
    }
    ICHECK(!accum_dtype.empty())
        << "Unsupported C dtype for TCGEN5MMA: " << C->dtype;
    ss << op_name << "<" << M << ", " << N << ", " << K << ", ";
    ss << meta.atom_m << ", " << meta.atom_n << ", " << meta.atom_k << ", ";
    ss << trans_A << ", " << trans_B << ", ";
    ss << accum_dtype;
    ss << ">";

    auto C_buffer = T.buffer_remap.count(C) ? T.buffer_remap[C] : C;
    Array<PrimExpr> new_args;
    new_args.push_back(StringImm(ss.str()));
    new_args.push_back(Aptr);
    new_args.push_back(Bptr);
    new_args.push_back(BufferLoad(C_buffer, C_coords));
    new_args.push_back(mbarptr);
    new_args.push_back(clear_accum);
    auto new_call = Call(DataType::Handle(), builtin::call_extern(), new_args);

    // Since TCGEN5MMA atoms provided by CUTLASS always have an internal
    // `elect_one_sync()`, we check if we are calling it using full warps
    constexpr int warp_size = 32;
    ICHECK(
        analyzer->CanProveEqual(FloorMod(T.thread_bounds->min, warp_size), 0) &&
        analyzer->CanProveEqual(FloorMod(T.thread_bounds->extent, warp_size),
                                0))
        << "TCGEN5MMA requires thread bounds to be multiples of warp size (32) "
           "and aligned to warps.";
    if (analyzer->CanProveEqual(T.thread_bounds->extent, warp_size)) {
      // If the thread bounds is exactly one warp, we can use the original call
      return Evaluate(new_call);
    } else {
      // Add an if-else clause
      auto tcgen5mma_call =
          IfThenElse(EQ(FloorDiv(T.thread_var, warp_size),
                        FloorDiv(T.thread_bounds->min, warp_size)),
                     Evaluate(new_call));
      return tcgen5mma_call;
    }
  }

  if (A.scope() == "local.fragment") {
    ICHECK(B.scope() != "local.fragment");
    op_name = "tl::gemm_rs";
  } else if (B.scope() == "local.fragment") {
    op_name = "tl::gemm_sr";
  } else {
    op_name = "tl::gemm_ss";
  }
  ICHECK(C.scope() == "local.fragment");

  ss << op_name << "<" << M << ", " << N << ", " << K << ", ";
  ss << warp_m << ", " << warp_n << ", ";
  ss << trans_A << ", " << trans_B;
  auto clear_accum_bool = clear_accum.as<Bool>();
  ICHECK(clear_accum_bool.has_value())
      << "clear_accum must be a constant Bool type, got " << clear_accum;
  ss << ", " << bool(clear_accum_bool.value());
  if (TargetIsCuda(T.target) && (GetArchInt(T.target) >= 75)) {
    ss << ", " << stride_A << ", " << stride_B;
    ss << ", " << offset_A << ", " << offset_B;
  }
  if (TargetIsCDNA(T.target)) {
    // for cdna gemm, we need to specify kPack
    ss << ", " << kPack;
  } else if (TargetIsHopper(T.target)) {
    ss << ", " << (gemm_inst == GemmInst::kWGMMA ? "true" : "false");
  }

  // Emit wg_wait if necessary
  if (TargetIsHopper(T.target)) {
    if (wg_wait != 0) {
      ss << ", " << wg_wait;
    }
  } else if (TargetIsSm100(T.target)) {
    // NOTE On sm100, only the leading thread issues the TCGEN5MMA instruction
    // but all threads need to wait, so we emit another statement for cases
    // where wg_wait == 0.
    ICHECK(wg_wait == 0 || wg_wait == -1)
        << "wg_wait must be 0 or -1 for Sm100";
  } else {
    ICHECK(wg_wait == 0)
        << "wg_wait must be 0 for non-Hopper and non-Sm100 targets";
  }
  ss << ">";

  auto new_call = Call(DataType::Handle(), tl::tl_gemm(),
                       Array<PrimExpr>{StringImm(ss.str()), Aptr, Bptr, Cptr});
  return Evaluate(new_call);
}

/**
 * @brief Infer and bind target-specific memory/layout mappings for A, B, and C.
 *
 * Infers per-buffer layouts (fragment or shared-memory layouts) for this GEMM
 * operator according to the target architecture, thread bounds, warp
 * partitioning, data types, and transpose flags, then binds fragment layouts
 * to the thread range when required.
 *
 * Preconditions:
 * - C.scope() == "local.fragment"
 *
 * Side effects:
 * - Marks layout inference as completed (sets completed_ = true).
 * - May abort via ICHECK on unsupported targets, invalid buffer scopes, or
 *   incompatible shape constraints.
 *
 * @param T Input layout-inference context (provides thread bounds and target).
 * @return LayoutMap mapping A, B, and C to their inferred layouts.
 */
LayoutMap GemmNode::InferLayout(const LayoutInferArgs &T,
                                InferLevel level) const {
  if (completed_)
    return {};
  LayoutMap results;
  auto thread_range = T.thread_bounds;
  auto block_size = *as_const_int(thread_range->extent);
  GemmInst gemm_inst = GetGemmInst(block_size, T.target);
  auto [warp_m, warp_n] =
      policy->ComputeWarpPartition(M, N, block_size, T.target, gemm_inst);
  if (TargetIsVolta(T.target)) {
    ICHECK(C.scope() == "local.fragment")
        << "Volta gemm only supports C in local.fragment scope, got "
        << C.scope();
    auto fragment =
        makeGemmVoltaFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment->BindThreadRange(thread_range));
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      int dim_A = A->shape.size();
      results.Set(A, makeGemmVoltaABLayout(*as_const_int(A->shape[dim_A - 2]),
                                           *as_const_int(A->shape[dim_A - 1]),
                                           true, !trans_A));
    } else if (A.scope() == "local.fragment") {
      ICHECK(trans_A == false);
      auto fragment = makeGemmVoltaFragmentA(M, N, K, M / warp_m, N / warp_n);
      results.Set(A, fragment->BindThreadRange(thread_range));
    } else {
      ICHECK(0);
    }

    ICHECK(B.scope() == "shared" || B.scope() == "shared.dyn");
    int dim_B = B->shape.size();
    results.Set(B, makeGemmVoltaABLayout(*as_const_int(B->shape[dim_B - 2]),
                                         *as_const_int(B->shape[dim_B - 1]),
                                         false, trans_B));
  } else if (TargetIsAmpere(T.target) || TargetIsTuring(T.target) ||
             TargetIsSM120(T.target) ||
             (TargetIsSm100(T.target) && gemm_inst == GemmInst::kMMA)) {
    ICHECK(C.scope() == "local.fragment")
        << "MMA only supports C in local.fragment scope, got " << C.scope();

    auto fragment =
        makeGemmFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment->BindThreadRange(thread_range));

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      int dim_A = A->shape.size();
      const int64_t mat_stride = *as_const_int(A->shape[dim_A - 2]);
      const int64_t mat_continuous = *as_const_int(A->shape[dim_A - 1]);
      results.Set(A,
                  makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                   A->dtype.bits(), !trans_A));
    } else if (A.scope() == "local.fragment") {
      auto fragment = makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n,
                                        A->dtype.bits(), trans_A);
      results.Set(A, fragment->BindThreadRange(thread_range));
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      int dim_B = B->shape.size();
      const int64_t mat_stride = *as_const_int(B->shape[dim_B - 2]);
      const int64_t mat_continuous = *as_const_int(B->shape[dim_B - 1]);
      results.Set(B,
                  makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                   B->dtype.bits(), trans_B));
    } else if (B.scope() == "local.fragment") {
      auto fragment =
          makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n, trans_B);
      results.Set(B, fragment->BindThreadRange(thread_range));
    } else {
      ICHECK(0);
    }
  } else if (TargetIsHopper(T.target)) {
    ICHECK(C.scope() == "local.fragment")
        << (gemm_inst == GemmInst::kWGMMA ? "WGMMA " : "MMA ")
        << "only supports C in local.fragment scope, got " << C.scope();
    auto fragment =
        gemm_inst == GemmInst::kWGMMA
            ? makeGemmFragmentCHopper(M, N, M / warp_m, N / warp_n,
                                      C->dtype.bits())
            : makeGemmFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment->BindThreadRange(thread_range));
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      int dim_A = A->shape.size();
      const int64_t mat_stride = *as_const_int(A->shape[dim_A - 2]);
      const int64_t mat_continuous = *as_const_int(A->shape[dim_A - 1]);
      const int64_t continuity =
          trans_A ? 4 * mat_continuous / warp_m : mat_continuous;
      auto ABLayout =
          gemm_inst == GemmInst::kWGMMA
              ? makeGemmABLayoutHopper(mat_stride, mat_continuous, continuity,
                                       A->dtype.bits(), !trans_A)
              : makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                 A->dtype.bits(), !trans_A);
      results.Set(A, ABLayout);
    } else {
      auto fragment = makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n,
                                        A->dtype.bits(), trans_A);
      results.Set(A, fragment->BindThreadRange(thread_range));
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      int dim_B = B->shape.size();
      const int64_t mat_stride = *as_const_int(B->shape[dim_B - 2]);
      const int64_t mat_continuous = *as_const_int(B->shape[dim_B - 1]);
      const int64_t continuity =
          trans_B ? mat_continuous : mat_continuous / warp_n;

      auto ABLayout =
          gemm_inst == GemmInst::kWGMMA
              ? makeGemmABLayoutHopper(mat_stride, mat_continuous, continuity,
                                       B->dtype.bits(), trans_B)
              : makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                 B->dtype.bits(), trans_B);
      results.Set(B, ABLayout);
    } else {
      auto fragment =
          makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n, trans_B);
      results.Set(B, fragment->BindThreadRange(thread_range));
    }
  } else if (gemm_inst == GemmInst::kTCGEN5MMA) {
    ICHECK(C.scope() == "shared.tmem")
        << "TCGEN5MMA only supports C in shared.tmem scope, got " << C.scope();
    ICHECK(A.scope() == "shared.dyn" || A.scope() == "shared")
        << "Current TCGEN5MMA only supports A in shared.dyn scope";
    auto [can_use_tcgen5mma, meta] =
        GetTCGEN5MMAMeta(M, N, K, A->dtype, C->dtype);
    ICHECK(can_use_tcgen5mma);
    {
      int dim_A = A->shape.size();
      const int64_t mat_stride = *as_const_int(A->shape[dim_A - 2]);
      const int64_t mat_continuous = *as_const_int(A->shape[dim_A - 1]);
      results.Set(A, makeGemmABLayoutSm100(mat_stride, mat_continuous,
                                           mat_continuous, A->dtype.bits(),
                                           trans_A ? 1 : 2));
    }
    {
      int dim_B = B->shape.size();
      const int64_t mat_stride = *as_const_int(B->shape[dim_B - 2]);
      const int64_t mat_continuous = *as_const_int(B->shape[dim_B - 1]);
      const int64_t continuity = mat_continuous;
      results.Set(B,
                  makeGemmABLayoutSm100(mat_stride, mat_continuous, continuity,
                                        B->dtype.bits(), trans_B ? 2 : 1));
    }
    {
      Layout res;
      IterVar i = make_itervar("i", M);
      IterVar j = make_itervar("j", N);
      ICHECK(M % meta.atom_m == 0);
      PrimExpr atom_idx = FloorDiv(i, meta.atom_m) +
                          FloorDiv(j, meta.atom_n) * (M / meta.atom_m);
      PrimExpr ai = FloorMod(i, meta.atom_m); // "ai" means "atom_i"
      PrimExpr aj = FloorMod(j, meta.atom_n);
      if (meta.atom_m == 128) {
        // Layout D
        // (https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-data-path-layout-d)
        res = Layout(Array{i, j}, {ai, aj + atom_idx * meta.atom_n});
      } else if (meta.atom_m == 64) {
        // Layout E
        // (https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-data-path-layout-e)
        // since .ws variant is used About why we use .ws variant here, please
        // refer to gemm_sm100.h
        res = Layout(Array{i, j}, {FloorDiv(ai, 32) * 32 + FloorMod(ai, 32) +
                                       FloorDiv(aj, meta.atom_n / 2) * 64,
                                   FloorMod(aj, meta.atom_n / 2) +
                                       atom_idx * (meta.atom_n / 2)});
      } else if (meta.atom_m == 32) {
        // Layout G
        // (https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-data-path-layout-g)
        res = Layout(
            Array{i, j},
            {FloorMod(ai, 32) + FloorDiv(aj, meta.atom_n / 4) * 32,
             FloorMod(aj, meta.atom_n / 4) + atom_idx * (meta.atom_n / 4)});
      } else {
        ICHECK(0);
      }
      results.Set(C, res);
    }
  } else if (TargetIsCDNA(T.target)) {
    ICHECK(C.scope() == "local.fragment")
        << "CDNA gemm (FMMA) only supports C in local.fragment scope, got "
        << C.scope();
    auto fragment =
        makeGemmFragmentCCDNA(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment->BindThreadRange(thread_range));

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      int dim_A = A->shape.size();
      auto shared_layout = makeGemmABLayoutCDNA(
          *as_const_int(A->shape[dim_A - 2]),
          *as_const_int(A->shape[dim_A - 1]), A->dtype.bits(), kPack);
      results.Set(A, shared_layout);
    } else if (A.scope() == "local.fragment") {
      auto fragment = makeGemmFragmentACDNA(M, N, K, M / warp_m, N / warp_n,
                                            A->dtype.bits(), kPack, trans_A);
      results.Set(A, fragment->BindThreadRange(thread_range));
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      int dim_B = B->shape.size();
      auto shared_layout = makeGemmABLayoutCDNA(
          *as_const_int(B->shape[dim_B - 2]),
          *as_const_int(B->shape[dim_B - 1]), B->dtype.bits(), kPack);

      results.Set(B, shared_layout);
    } else if (B.scope() == "local.fragment") {
      auto fragment =
          makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n, trans_B);
      results.Set(B, fragment->BindThreadRange(thread_range));
    } else {
      ICHECK(0);
    }
  } else {
    ICHECK(0) << "Not supported " << T.target->str();
  }
  completed_ = true;
  return results;
}

TIR_REGISTER_TL_OP(Gemm, gemm)
    .set_num_inputs(5)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));

TVM_REGISTER_OP("tl.GemmWarpPolicy")
    .set_attr<TScriptPrinterName>("TScriptPrinterName", "GemmWarpPolicy");

TVM_FFI_STATIC_INIT_BLOCK({
  GemmNode::RegisterReflection();
  GemmWarpPolicyNode::RegisterReflection();
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.GemmWarpPolicyComputeWarpPartition",
                        [](GemmWarpPolicy policy, int M, int N, int block_size,
                           Target target, GemmInst gemm_inst) {
                          policy->ComputeWarpPartition(M, N, block_size, target,
                                                       gemm_inst);
                          return;
                        });
});

} // namespace tl
} // namespace tvm