utils.cc 8.15 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*!
 * \file layout/utils.cc
 * \brief Some arith tools for layout & fragment inference
 *
 */

#include "utils.h"

#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>

namespace tvm {
namespace tl {

using namespace tir;
using namespace arith;

bool CanProveDivisible(const PrimExpr &lhs, const PrimExpr &rhs) {
  const auto *clhs = lhs.as<IntImmNode>();
  const auto *crhs = rhs.as<IntImmNode>();
  if (crhs && crhs->value == 0) {
    return false;
  } else if (clhs && crhs) {
    return clhs->value % crhs->value == 0;
  }

  return false;
}

/*!
 * \brief Collector that collects the outgoing split reference of each IterMark.
 *
 *  These out-going splits can then be used to check if the iterators are
 * independent.
 */
class IterMarkSplitCollector {
public:
  // mark all IterMarks that are visited.
  std::unordered_set<IterMark, ObjectPtrHash, ObjectPtrEqual> visited_;
  // each iter mark to its outgoing splits that are referenced.
  std::unordered_map<IterMark, std::vector<IterSplitExpr>, ObjectPtrHash,
                     ObjectPtrEqual>
      mark2splits_;
  /*!
   * \brief Collect all mark2splits recursively from indices.
   * \param indices The iterator of interest.
   */
  void Collect(const Array<IterSumExpr> &indices) {
    for (IterSumExpr sum_expr : indices) {
      for (IterSplitExpr split : sum_expr->args) {
        this->CollectInternal(split->source);
        mark2splits_[split->source].push_back(split);
      }
    }
  }

  void CollectInternal(const IterMark &mark) {
    if (visited_.count(mark))
      return;
    visited_.insert(mark);
    if (auto *op = mark->source.as<IterSumExprNode>()) {
      for (IterSplitExpr split : op->args) {
        this->CollectInternal(split->source);
        mark2splits_[split->source].push_back(split);
      }
    }
  }
};

Array<IterSplitExpr> get_unused_iters(const IterMark &mark,
                                      const std::vector<IterSplitExpr> &splits,
                                      Analyzer *analyzer) {
  PrimExpr expected_lower_factor = make_const(mark->source->dtype, 1);
  std::vector<bool> used(splits.size(), false);
  std::vector<IterSplitExpr> results;
  size_t i = 0;
  for (; i < splits.size();) {
    size_t j = 0;
    size_t lowest = splits.size();
    for (; j < splits.size(); ++j) {
      if (used[j])
        continue;
      if (!used[j] && analyzer->CanProveEqual(splits[j]->lower_factor,
                                              expected_lower_factor)) {
        break;
      }
      if (lowest == splits.size() ||
          CanProveDivisible(splits[lowest]->lower_factor,
                            splits[j]->lower_factor)) {
        lowest = j;
      }
    }
    if (j == splits.size()) {
      ICHECK(lowest != splits.size());
      ICHECK(CanProveDivisible(splits[lowest]->lower_factor,
                               expected_lower_factor))
          << " Cannot prove divisible for " << splits[lowest]->lower_factor
          << " and " << expected_lower_factor;
      results.emplace_back(
          mark, expected_lower_factor,
          FloorDiv(splits[lowest]->lower_factor, expected_lower_factor), 1);
      expected_lower_factor = splits[lowest]->lower_factor;
    } else {
      used[j] = true;
      i++;
      expected_lower_factor = splits[j]->lower_factor * splits[j]->extent;
    }
  }
  bool match_full_iter =
      analyzer->CanProveEqual(expected_lower_factor, mark->extent);
  if (!match_full_iter) {
    results.emplace_back(mark, expected_lower_factor,
                         FloorDiv(mark->extent, expected_lower_factor), 1);
  }
  return results;
}

Array<IterSplitExpr> DivideUnusedIterators(const Array<PrimExpr> &exprs,
                                           const Array<IterVar> input_iters,
                                           Analyzer *analyzer) {
  auto iter_sum = exprs.Map([&](const auto &e) {
    return NormalizeToIterSum(e, ToVMap(input_iters), analyzer);
  });
  IterMarkSplitCollector collector;
  collector.Collect(iter_sum);
  Array<IterSplitExpr> results;

  for (const IterMark &mark : collector.visited_) {
    if (!mark->source.as<Var>()) {
      std::ostringstream oss;
      oss << "Not a normalized iterator: " << mark;
      throw NormalizeIterException(oss.str());
    }
  }

  for (const IterVar &iter : input_iters) {
    IterMark iv_mark;
    for (const IterMark &mark : collector.visited_) {
      if (mark->source.as<Var>()->same_as(iter->var)) { // NOLINT(*)
        iv_mark = mark;
        break;
      }
    }
    if (iv_mark.defined()) {
      auto splits =
          get_unused_iters(iv_mark, collector.mark2splits_[iv_mark], analyzer);
      // Put the small axis last
      results.insert(results.end(), splits.rbegin(), splits.rend());
    } else if (!is_one(iter->dom->extent)) {
      auto mark = IterMark(iter->var, iter->dom->extent);
      auto split = IterSplitExpr(mark, 1, iter->dom->extent, 1);
      results.push_back(split);
    }
  }
  return results;
}

PrimExpr MakeFlattenedExpression(const Array<arith::IterSplitExpr> &splits) {
  Array<arith::IterSplitExpr> lists;
  PrimExpr scale = 1;
  for (int i = splits.size() - 1; i >= 0; i--) {
    auto scaled_split = arith::IterSplitExpr(
        splits[i]->source, splits[i]->lower_factor, splits[i]->extent, scale);
    lists.push_back(scaled_split);
    scale *= splits[i]->extent;
  }
  return arith::NormalizeIterMapToExpr(arith::IterSumExpr(lists, 0));
}

class IterSumMutator {
public:
  IterSumMutator(const Map<IterSplitExpr, IterSplitExpr> &replace_map)
      : replace_map_(replace_map) {}

  // override the original mutate function.
  IterSumExpr Mutate(const IterSumExpr &iter_sum) {
    Array<IterSplitExpr> args;
    for (const auto &split : iter_sum->args) {
      if (replace_map_.count(split)) {
        args.push_back(replace_map_[split]);
      } else {
        auto split_ = IterSplitExpr(Mutate(split->source), split->lower_factor,
                                    split->extent, split->scale);
        args.push_back(split_);
      }
    }
    return IterSumExpr(args, iter_sum->base);
  }

  IterMark Mutate(const IterMark &mark) {
    if (auto *op = mark->source.as<IterSumExprNode>()) {
      return IterMark(Mutate(GetRef<IterSumExpr>(op)), mark->extent);
    } else {
      return mark;
    }
  }

private:
  Map<IterSplitExpr, IterSplitExpr> replace_map_;
};

std::pair<PrimExpr, IterVar> CompressIterator(const PrimExpr &expr,
                                              const Array<IterVar> input_iters,
                                              const Var &var,
                                              arith::Analyzer *analyzer) {
  auto iter_sum =
      arith::NormalizeToIterSum(expr, ToVMap(input_iters), analyzer);
  IterMarkSplitCollector collector;
  collector.Collect({iter_sum});
  IterMark mark;
  for (const IterMark &m : collector.visited_) {
    ICHECK(m->source.as<Var>()) << "Not a normalized iterator: " << mark;
    if (m->source.as<Var>().value().same_as(var)) {
      mark = m;
      break;
    }
  }
  std::vector<tvm::arith::IterSplitExpr> splits;
  if (mark.defined()) {
    splits = collector.mark2splits_[mark];
  }

  PrimExpr extent = 1;
  for (const auto &split : splits) {
    extent *= split->extent;
  }
  extent = analyzer->Simplify(extent);

  auto new_var = Var(var->name_hint, var->type_annotation);
  auto new_iter_var = IterVar(Range(0, extent), new_var, IterVarType::kDataPar);
  auto new_mark = IterMark(new_var, extent);
  PrimExpr scale = 1;
  Map<IterSplitExpr, IterSplitExpr> replace_map;
  for (const auto &split : splits) {
    auto rescaled =
        arith::IterSplitExpr(new_mark, scale, split->extent, split->scale);
    replace_map.Set(split, rescaled);
    scale *= split->extent;
  }

  IterSumMutator mutator(replace_map);
  PrimExpr reaplced =
      analyzer->Simplify(NormalizeIterMapToExpr(mutator.Mutate(iter_sum)));

  return {reaplced, new_iter_var};
}

Array<IterVar> ToIterVars(const Map<Var, Range> &vmap) {
  Array<IterVar> result;
  for (const auto &[var, range] : vmap) {
    result.push_back(IterVar(range, var, IterVarType::kDataPar));
  }
  return result;
}

Map<Var, Range> ToVMap(const Array<IterVar> &ivs) {
  Map<Var, Range> result;
  for (const auto &iv : ivs) {
    result.Set(iv->var, iv->dom);
  }
  return result;
}

} // namespace tl
} // namespace tvm