layout.cc 20.9 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*!
 * \file layout/layout.cc
 *
 */

#include "layout.h"
#include <tvm/ffi/reflection/registry.h>

#include <tvm/arith/pattern.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>

#include "arith/pattern_match.h"
#include "utils.h"

namespace tvm {
namespace tl {

using namespace tir;

static Var getPlaceholder(const std::string &s) {
  static std::unordered_map<std::string, Var> map;
  if (map.find(s) == map.end()) {
    map[s] = Var(s);
  }
  return map[s];
}

Var ReplicationPlaceholder() { return getPlaceholder("_rep"); }
Var InputPlaceholder(size_t idx) {
  return getPlaceholder(std::string{'_', char('i' + idx)});
}

Map<Var, Range> LayoutNode::getVarMap() const {
  Map<Var, Range> map;
  for (size_t i = 0; i < InputDim(); i++) {
    map.Set(InputPlaceholder(i), {0, input_size_[i]});
  }
  return map;
}

Map<Var, Range> FragmentNode::getVarMap() const {
  auto map = LayoutNode::getVarMap();
  map.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  return map;
}

LayoutNode::LayoutNode(Array<PrimExpr> input_size,
                       Array<PrimExpr> forward_index) {
  input_size_ = input_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
}

Layout::Layout(Array<IterVar> forward_var, Array<PrimExpr> forward_index) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });

  auto n = make_object<LayoutNode>(input_size, forward_index);
  data_ = std::move(n);
}

Layout::Layout(Array<PrimExpr> input_size, Array<PrimExpr> forward_index) {
  auto n = make_object<LayoutNode>(input_size, forward_index);
  data_ = std::move(n);
}

void LayoutNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<LayoutNode>()
      .def_ro("input_size", &LayoutNode::input_size_)
      .def_ro("forward_index", &LayoutNode::forward_index_);
}

void LayoutNode::UpdateAnalyzer(arith::Analyzer *analyzer) const {
  for (const auto &[var, dom] : getVarMap()) {
    analyzer->Bind(var, dom);
  }
}

Array<PrimExpr> LayoutNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

Array<PrimExpr> LayoutNode::OutputShape() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  for (size_t i = 0; i < ret.size(); i++) {
    auto ist = analyzer.int_set(forward_index_[i] + 1);
    if (arith::is_neg_inf(ist.min()) && arith::is_pos_inf(ist.max())) {
      // X-OR Expression
      ret.Set(i, input_size_[i]);
    } else {
      // CHECK(is_one(ist.min())) << ist.min();
      ret.Set(i, ist.max());
    }
  }
  return ret;
}

Array<PrimExpr> LayoutNode::Forward(const Array<PrimExpr> &vars) const {
  if (vars.empty())
    return forward_index_;
  ICHECK_GE(vars.size(), InputDim());

  // Take the last InputDim() elements for transformation
  Array<PrimExpr> transform_vars;
  for (size_t i = vars.size() - InputDim(); i < vars.size(); i++) {
    transform_vars.push_back(vars[i]);
  }

  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
    vmap.Set(InputPlaceholder(i), transform_vars[i]);
  }

  Array<PrimExpr> transformed = forward_index_.Map(
      [&](const PrimExpr &e) { return Substitute(e, vmap); });

  // Concatenate with the remaining elements from vars
  Array<PrimExpr> result;
  for (size_t i = 0; i < vars.size() - InputDim(); i++) {
    result.push_back(vars[i]);
  }
  for (const auto &expr : transformed) {
    result.push_back(expr);
  }

  return result;
}

Fragment FragmentNode::Repeat(const Array<PrimExpr> &repeats,
                              bool repeat_on_thread,
                              bool lower_dim_first) const {
  ICHECK_EQ(repeats.size(), InputDim());
  Array<PrimExpr> new_input_size;
  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
    new_input_size.push_back(input_size_[i] * repeats[i]);
    vmap.Set(InputPlaceholder(i),
             FloorMod(InputPlaceholder(i), InputShape()[i]));
  }

  PrimExpr repeats_index = 0, repeat_stride = 1;
  if (lower_dim_first) {
    for (int i = InputDim() - 1; i >= 0; i--) {
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
      repeat_stride *= repeats[i];
    }
  } else {
    for (size_t i = 0; i < InputDim(); i++) {
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
      repeat_stride *= repeats[i];
    }
  }

  if (repeat_on_thread) {
    PrimExpr thread_size = ThreadExtent();
    auto new_forward_index = forward_index_.Map(
        [&](const PrimExpr &e) { return Substitute(e, vmap); });
    auto new_forward_thread =
        Substitute(forward_thread_, vmap) + thread_size * repeats_index;
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
                    replicate_size_, std::nullopt);
  } else {
    ICHECK(OutputDim() == 1);
    PrimExpr frag_len = OutputShape()[0];
    Array<PrimExpr> new_forward_index = {Substitute(forward_index_[0], vmap) +
                                         frag_len * repeats_index};
    PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
                    replicate_size_, std::nullopt);
  }
}

Fragment FragmentNode::Replicate(int repeats) const {
  ICHECK(repeats >= 1);
  Map<Var, PrimExpr> vmap;
  vmap.Set(ReplicationPlaceholder(),
           FloorMod(ReplicationPlaceholder(), ReplicateExtent()));
  PrimExpr new_forward_thread =
      Substitute(forward_thread_, vmap) +
      ThreadExtent() * FloorDiv(ReplicationPlaceholder(), ReplicateExtent());
  return Fragment(input_size_, forward_index_, new_forward_thread,
                  ReplicateExtent() * repeats, std::nullopt);
}

Fragment FragmentNode::DeReplicate() const {
  ICHECK(OutputDim() == 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  int factor = 1;
  auto rep_size = as_const_int(ReplicateExtent());
  auto idx_size = as_const_int(OutputShape()[0]);
  if (rep_size && idx_size) {
    factor = arith::ZeroAwareGCD(*rep_size, *idx_size);
  }
  if (factor == 1)
    return GetRef<Fragment>(this);

  Map<Var, PrimExpr> vmap;
  vmap.Set(ReplicationPlaceholder(), ReplicationPlaceholder() * factor +
                                         FloorMod(forward_index_[0], factor));
  PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
  Array<PrimExpr> new_forward_index = {FloorDiv(forward_index_[0], factor)};
  return Fragment(input_size_, new_forward_index, new_forward_thread,
                  int(*rep_size) / factor, std::nullopt);
}

Fragment FragmentNode::BindThreadRange(Range thread_range) const {
  auto n = make_object<FragmentNode>(*this);
  n->thread_range_ = thread_range;
  return Fragment(n);
}

std::pair<Layout, arith::IterMapLevel> LayoutNode::InverseWithLevel() const {
  arith::Analyzer analyzer;
  auto collect_symbolic = [&](const Array<PrimExpr> &shape) {
    Array<PrimExpr> symbolic_dims;
    for (const auto &dim : shape) {
      if (!as_const_int(dim)) {
        symbolic_dims.push_back(dim);
      }
    }
    return symbolic_dims;
  };
  Array<PrimExpr> symbolic_dims = collect_symbolic(input_size_);
  Array<PrimExpr> output_shape = OutputShape();
  symbolic_dims.insert(symbolic_dims.end(), output_shape.begin(),
                       output_shape.end());
  symbolic_dims = collect_symbolic(symbolic_dims);
  bool is_static_shape = symbolic_dims.empty();
  auto level = is_static_shape ? arith::IterMapLevel::Bijective
                               : arith::IterMapLevel::NoCheck;
  if (!is_static_shape) {
    // Runtime guards keep dynamic tails safe, so we allow NoCheck here and
    // warn.
    LOG(WARNING) << "Layout::Inverse on symbolic layout, falling back to "
                    "NoCheck; symbolic dims: "
                 << symbolic_dims;
  }
  arith::IterMapResult res =
      arith::DetectIterMap(forward_index_, getVarMap(), 1, level, &analyzer);
  ICHECK(res->errors.empty())
      << "Layout " << DebugOutput() << " has errors: " << res->errors;

  auto outputs_shape = OutputShape();
  Array<PrimExpr> outputs;
  for (size_t i = 0; i < OutputDim(); i++) {
    outputs.push_back(InputPlaceholder(i));
  }

  auto inv = arith::InverseAffineIterMap(res->indices, outputs);

  Array<PrimExpr> backward_index;
  for (size_t i = 0; i < InputDim(); i++) {
    if (inv.find(InputPlaceholder(i)) != inv.end()) {
      backward_index.push_back(inv[InputPlaceholder(i)]);
    } else {
      backward_index.push_back(0);
    }
  }

  return {Layout(outputs_shape, backward_index), level};
}

Layout LayoutNode::Inverse() const {
  auto inverse_result = InverseWithLevel();
  return std::move(inverse_result.first);
}
PrimExpr infer_fragment_index(const Map<Var, Range> &input_iters,
                              const PrimExpr &forward_thread,
                              arith::Analyzer *analyzer) {
  Array<arith::IterSplitExpr> splits = DivideUnusedIterators(
      {forward_thread}, ToIterVars(input_iters), analyzer);

  Array<arith::IterSplitExpr> split_without_rep;
  for (const auto &split : splits) {
    CHECK(split->source->source.as<Var>());
    if (split->source->source.as<Var>().value().same_as(
            ReplicationPlaceholder()))
      continue;
    split_without_rep.push_back(split);
  }
  return MakeFlattenedExpression(split_without_rep);
}

FragmentNode::FragmentNode(Array<PrimExpr> input_size,
                           Array<PrimExpr> forward_index,
                           PrimExpr forward_thread, PrimExpr replicate_size) {
  input_size_ = input_size;
  replicate_size_ = replicate_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  forward_thread_ = analyzer.Simplify(forward_thread);
  if (forward_index.empty()) {
    forward_index = {
        infer_fragment_index(getVarMap(), forward_thread_, &analyzer)};
  }
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
}

Fragment::Fragment(Array<IterVar> forward_var, Array<PrimExpr> forward_index,
                   PrimExpr forward_thread, IterVar thread_replicate) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  PrimExpr replicate_size = 1;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
  if (thread_replicate.defined()) {
    ICHECK(is_zero(thread_replicate->dom->min));
    replicate_size = thread_replicate->dom->extent;
    vmap.Set(thread_replicate->var, ReplicationPlaceholder());
  }
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });
  forward_thread = Substitute(forward_thread, vmap);

  auto n = make_object<FragmentNode>(input_size, forward_index, forward_thread,
                                     replicate_size);
  data_ = std::move(n);
}

Fragment::Fragment(Array<PrimExpr> input_size, Array<PrimExpr> forward_index,
                   PrimExpr forward_thread, PrimExpr replicate_size,
                   Optional<Var> replicate_var) {
  if (replicate_var.defined()) {
    forward_thread = Substitute(
        forward_thread, {{replicate_var.value(), ReplicationPlaceholder()}});
  }
  auto n = make_object<FragmentNode>(input_size, forward_index, forward_thread,
                                     replicate_size);
  data_ = std::move(n);
}

// which means the forward_thread is rep_var -> lambda i, rep: rep
bool FragmentNode::IsCompletedReplicated() const {
  arith::Analyzer analyzer;
  return ExprDeepEqual()(analyzer.Simplify(forward_thread_),
                         ReplicationPlaceholder());
}

PrimExpr FragmentNode::ThreadExtent() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  auto ist = analyzer.int_set(forward_thread_ + 1);
  return ist.max();
}

Array<PrimExpr> FragmentNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  if (*as_const_int(ReplicateExtent()) > 1) {
    vars.push_back(ReplicationPlaceholder());
  }
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

PrimExpr FragmentNode::ForwardThread(const Array<PrimExpr> &vars,
                                     const Optional<PrimExpr> &rep_var) const {
  Map<Var, PrimExpr> vmap;
  ICHECK_EQ(vars.size(), InputDim());
  for (size_t i = 0; i < InputDim(); i++) {
    vmap.Set(InputPlaceholder(i), vars[i]);
  }
  if (rep_var.defined())
    vmap.Set(ReplicationPlaceholder(), rep_var.value());

  return Substitute(forward_thread_, vmap);
}

Layout FragmentNode::Inverse() const {
  auto result = InverseWithLevel();
  return std::move(result.first);
}

std::pair<Layout, arith::IterMapLevel> FragmentNode::InverseWithLevel() const {
  auto input_size_copy = input_size_;
  input_size_copy.push_back(ReplicateExtent());
  auto forward_index_copy = forward_index_;
  forward_index_copy.push_back(
      Substitute(forward_thread_,
                 {{ReplicationPlaceholder(), InputPlaceholder(InputDim())}}));
  auto fwd = Layout(input_size_copy, forward_index_copy);
  return fwd->InverseWithLevel();
}

Fragment FragmentNode::CondenseReplicateVar() const {
  arith::Analyzer analyzer;
  auto input_iters = getVarMap();
  input_iters.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  PrimExpr new_forward_thread;
  IterVar new_thread_replicate;
  std::tie(new_forward_thread, new_thread_replicate) =
      CompressIterator(forward_thread_, ToIterVars(input_iters),
                       ReplicationPlaceholder(), &analyzer);
  return Fragment(input_size_, forward_index_, new_forward_thread,
                  new_thread_replicate->dom->extent, new_thread_replicate->var);
}

std::string LayoutNode::DebugOutput() const {
  std::stringstream ss;
  ss << "Layout(" << InputShape() << " -> " << OutputShape()
     << ", transform: " << GetForwardVars() << " -> " << GetForwardIndex()
     << ")";
  return ss.str();
}

std::string FragmentNode::DebugOutput() const {
  std::stringstream ss;
  ss << "Fragment(" << InputShape() << " -> " << OutputShape()
     << ", replicate: " << ReplicateExtent() << ", thread: " << ThreadExtent()
     << ", forward_thread: " << forward_thread_
     << ", forward_index: " << GetForwardIndex();
  if (thread_range_.defined()) {
    ss << ", thread_range: " << thread_range_;
  }
  ss << ")";
  return ss.str();
}

bool LayoutNode::SEqualReduce(const LayoutNode *other,
                              SEqualReducer equal) const {
  return equal(this->InputShape(), other->InputShape()) &&
         equal(this->forward_index_, other->forward_index_);
}

bool FragmentNode::SEqualReduce(const FragmentNode *other,
                                SEqualReducer equal) const {
  return equal(this->ReplicateExtent(), other->ReplicateExtent()) &&
         equal(this->InputShape(), other->InputShape()) &&
         equal(this->ThreadExtent(), other->ThreadExtent()) &&
         equal(this->forward_index_, other->forward_index_) &&
         equal(this->forward_thread_, other->forward_thread_);
}

bool LayoutNode::IsEqual(const LayoutNode *other, bool skip_index) const {
  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

bool FragmentNode::IsEqual(const FragmentNode *other, bool skip_index) const {
  // Fragment Layout Comparison can skip the index comparison
  // when the output shape is the same, as we can do
  // a[i, j] = b[j, i] in register level.

  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
  if (!ret) {
    // may be broadcast case
    return true;
  }
  if (this->thread_range_.defined() && other->thread_range_.defined()) {
    ret &= StructuralEqual()(this->thread_range_, other->thread_range_);
  }
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  ret &= StructuralEqual()(this->ReplicateExtent(), other->ReplicateExtent());
  ret &= StructuralEqual()(this->ThreadExtent(), other->ThreadExtent());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

void FragmentNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<FragmentNode>()
      .def_ro("forward_thread", &FragmentNode::forward_thread_)
      .def_ro("replicate_size", &FragmentNode::replicate_size_);
}

TVM_REGISTER_NODE_TYPE(LayoutNode);
TVM_REGISTER_NODE_TYPE(FragmentNode);

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef()
      .def_packed("tl.Layout",
                  [](PackedArgs args, Any *rv) {
                    *rv = Layout(args[0].cast<Array<IterVar>>(),
                                 args[1].cast<Array<PrimExpr>>());
                  })
      .def("tl.Layout_input_shape",
           [](Layout layout) { return layout->InputShape(); })
      .def("tl.Layout_output_shape",
           [](Layout layout) { return layout->OutputShape(); })
      .def("tl.Layout_inverse", [](Layout layout) { return layout->Inverse(); })
      .def("tl.Layout_index",
           [](Layout layout) { return layout->GetForwardIndex(); })
      .def("tl.Layout_forward_vars",
           [](Layout layout) { return layout->GetForwardVars(); })
      .def("tl.Layout_is_equal",
           [](Layout layout, Layout other) {
             const LayoutNode *other_node = other.as<LayoutNode>();
             return layout->IsEqual(other_node);
           })
      .def_packed("tl.Fragment",
                  [](PackedArgs args, Any *rv) {
                    *rv = Fragment(
                        /*forward_var=*/args[0].cast<Array<IterVar>>(),
                        /*forward_index=*/args[1].cast<Array<PrimExpr>>(),
                        /*forward_thread=*/args[2].cast<PrimExpr>(),
                        /*thread_replicate=*/args[3].cast<IterVar>());
                  })
      .def("tl.Fragment_is_equal",
           [](Fragment fragment, Fragment other) {
             const FragmentNode *other_node = other.as<FragmentNode>();
             return fragment->IsEqual(other_node);
           })
      .def("tl.Fragment_thread_size",
           [](Fragment fragment) { return fragment->ThreadExtent(); })
      .def("tl.Fragment_thread",
           [](Fragment fragment) { return fragment->GetForwardThread(); })
      .def("tl.Fragment_repeat",
           [](Fragment fragment, Array<PrimExpr> repeats, bool repeat_on_thread,
              bool lower_dim_first) {
             return fragment->Repeat(repeats, repeat_on_thread,
                                     lower_dim_first);
           })
      .def("tl.Fragment_replicate",
           [](Fragment fragment, int repeats) {
             return fragment->Replicate(repeats);
           })
      .def("tl.Fragment_condense_rep_var",
           [](Fragment fragment) { return fragment->CondenseReplicateVar(); })
      .def("tl.make_swizzled_layout",
           [](int stride, int continuous, int element_size, bool k_inner,
              bool allow_pad = true) {
             if (allow_pad) {
               return makeGemmABLayout(stride, continuous, continuous,
                                       element_size, k_inner);
             } else {
               return makeGemmABLayoutHopper(stride, continuous, continuous,
                                             element_size, k_inner);
             }
           })
      .def("tl.make_wgmma_swizzled_layout",
           [](int stride, int mat_continuous, int continuity, int element_size,
              bool k_inner) {
             return makeGemmABLayoutHopper(stride, mat_continuous, continuity,
                                           element_size, k_inner);
           })
      .def("tl.make_full_bank_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeFullBankSwizzleLayout(stride, continuous, element_size);
           })
      .def("tl.make_half_bank_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeHalfBankSwizzleLayout(stride, continuous, element_size);
           })
      .def("tl.make_quarter_bank_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeQuarterBankSwizzleLayout(stride, continuous,
                                                 element_size);
           })
      .def("tl.make_linear_layout", [](int stride, int continuous) {
        return makeGemmLayoutLinear(stride, continuous);
      });
});

TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  LayoutNode::RegisterReflection();
  FragmentNode::RegisterReflection();
});

} // namespace tl
} // namespace tvm