README.md 3.6 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
The following example demonstrates how to generate and visualize a memory layout using tilelang tools `plot_layout`.

Example Code

```python
import tilelang.language as T
from tvm import DataType
from tvm.tir import IndexMap
from typing import Literal, Callable
from tilelang.intrinsics.utils import get_mma_micro_size
from tilelang.tools import plot_layout

def make_mma_load_base_layout(dtype: str = "float16",
                              matrix: Literal["A", "B"] = "A",
                              transposed: bool = False) -> T.Fragment:
    """
    Create a layout function for storing MMA results into a fragment buffer.
    This layout is used in conjunction with `inverse_mma_store_layout` to
    map fragment indices to threads and local indices.

    Parameters
    ----------
    dtype : str
        The data type of the matrix.
    local_buf : tir.Buffer
        The local buffer representing a fragment of a matrix.

    Returns
    -------
    T.Fragment
        A fragment object that describes how threads and indices
        in `local_buf` are laid out.

    Raises
    ------
    AssertionError
        If `local_buf` is not detected to be a fragment buffer.
    """
    from tilelang.intrinsics.mma_layout import (
        shared_16x16_to_mma_32x8_layout_sr,
        shared_16x16_to_mma_32x8_layout_rs,
        shared_16x32_to_mma_32x16_layout,
        shared_32x16_to_mma_32x16_layout,
    )
    assert matrix in ["A", "B"], "matrix should be either A or B"
    dtype_bits = DataType(dtype).bits
    assert transposed is False, "transposed is not supported yet"
    # s represents spatial axis
    # r represents reduction axis
    # sr represents the two dims are spatial + reduction
    # rs represents the two dims are reduction + spatial
    transform_func_sr: Callable = None
    transform_func_rs: Callable = None
    if dtype_bits == 16:
        transform_func_sr = shared_16x16_to_mma_32x8_layout_sr
        transform_func_rs = shared_16x16_to_mma_32x8_layout_rs
    elif dtype_bits == 8:
        transform_func_sr = shared_16x32_to_mma_32x16_layout
        transform_func_rs = shared_32x16_to_mma_32x16_layout
    else:
        raise ValueError(f"Unsupported dtype {dtype}")
    is_sr_conditions = [False]
    is_sr_conditions.append(matrix == "A" and not transposed)
    is_sr_conditions.append(matrix == "B" and transposed)
    is_sr_axis_order = any(is_sr_conditions)

    transform_func: Callable = transform_func_sr if is_sr_axis_order else transform_func_rs

    micro_size_s, _, micro_size_r = get_mma_micro_size(dtype)

    transform_func = transform_func
    inverse_mma_load_layout = IndexMap.from_func(transform_func, index_dtype="int32")

    def forward_thread(i: int, j: int) -> int:
        """
        Given the row index `i` and column index `j` in the fragment,
        """
        lane_id, _ = inverse_mma_load_layout.map_indices([i, j])
        return lane_id

    def forward_index(i: int, j: int) -> int:
        """
        Given the row index `i` and column index `j` in the fragment,
        """
        _, local_id = inverse_mma_load_layout.map_indices([i, j])
        return local_id

    base_fragment = T.Fragment(
        [micro_size_r, micro_size_s],
        forward_thread_fn=forward_thread,
        forward_index_fn=forward_index,
    )
    return base_fragment


# Create a 16×16 matrix layout for ldmatrix operations
base_layout = make_mma_load_base_layout(dtype="float16", matrix="A", transposed=False)

# Print the layout structure (optional for debugging)
print(base_layout)

# Plot and save the layout visualization
plot_layout(base_layout, name="base_layout")
```

Output

![base_layout](./images/base_layout.png)