example_gemv.py 13 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
import itertools
import tilelang as tl
import tilelang.language as T
from tvm import DataType
from tilelang.autotuner import autotune
from tilelang import jit


def ref_program(A, B):
    return A @ B.T


@tl.jit(out_idx=[-1])
def naive_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N)) as bn:
            tn = T.get_thread_binding(0)  # tn = threadIdx.x
            A_shared = T.alloc_shared((BLOCK_K,), dtype)
            B_shared = T.alloc_shared((BLOCK_N, BLOCK_K), dtype)
            C_reg = T.alloc_local((1,), accum_dtype)
            T.clear(C_reg)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for tk in T.serial(BLOCK_K):
                    A_shared[tk] = A[bk * BLOCK_K + tk]
                    B_shared[tn, tk] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                for tk in T.serial(BLOCK_K):
                    C_reg[0] += A_shared[tk].astype(accum_dtype) * B_shared[tn,
                                                                            tk].astype(accum_dtype)
            C[bn * BLOCK_N + tn] = C_reg[0]

    return main


@tl.jit(out_idx=[-1])
def naive_splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, BLOCK_K)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((1,), dtype)
            B_local = T.alloc_local((1,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                A_local[0] = A[bk * BLOCK_K + tk]
                B_local[0] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                C_accum[0] += A_local[0].astype(accum_dtype) * B_local[0].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


@tl.jit(out_idx=[-1])
def splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    TILE_K = T.ceildiv(BLOCK_K, reduce_threads)

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.serial(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


@tl.jit(out_idx=[-1])
def splitk_gemv_vectorized(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


@tl.jit(out_idx=[-1])
def splitk_gemv_vectorized_tvm(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)

            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            C_reduced = T.alloc_local((1,), accum_dtype)
            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        C_accum[0],
                        True,
                        C_reduced[0],
                        tk,
                        dtype="handle",
                    ))

            C[bn * BLOCK_N + tn] = C_reduced[0]

    return main


def get_block_template_configs():
    iter_params = dict(
        block_M=[2, 4, 8, 32, 64, 128],
        block_N=[2, 4, 8, 32, 64, 128],
        num_stages=[0, 1, 2, 3, 4],
        threads=[32, 64, 128, 256])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@tl.autotune(
    configs=get_block_template_configs(),
    warmup=3,
    rep=20,
)
@tl.jit(
    pass_configs={
        tl.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tl.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
    },
    out_idx=[2],
)
def gemv_alloc_reducer(M,
                       N,
                       block_M=128,
                       block_N=128,
                       num_stages=2,
                       threads=256,
                       dtype: str = "float16",
                       accum_dtype: str = "float"):

    @T.prim_func
    def main(a: T.Tensor((M, N), dtype), x: T.Tensor(N, dtype), o: T.Tensor(M,
                                                                            dtype)):  # type: ignore
        with T.Kernel(T.ceildiv(M, block_M), threads=threads) as i0_m:
            o_reducer = T.alloc_reducer(block_M, accum_dtype, replication="all")
            T.clear(o_reducer)
            for i0_n in T.Pipelined(T.ceildiv(N, block_N), num_stages=num_stages):
                a_smem = T.alloc_shared((block_M, block_N), dtype)
                T.copy(a[i0_m * block_M, i0_n * block_N], a_smem)
                a_frag = T.alloc_fragment((block_M, block_N), dtype)
                T.copy(a_smem, a_frag)
                x_frag = T.alloc_fragment(block_N, dtype)
                T.copy(x[i0_n * block_N], x_frag)
                for i1_m, i1_n in T.Parallel(block_M, block_N):
                    o_reducer[i1_m] += a_frag[i1_m, i1_n] * x_frag[i1_n]
            T.finalize_reducer(o_reducer)
            T.copy(o_reducer, o[i0_m * block_M])

    return main


def get_thread_template_configs():
    iter_params = dict(BLOCK_N=[2, 4, 8, 32, 64, 128], reduce_threads=[4, 8, 32])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(
    configs=get_thread_template_configs(),
    warmup=3,
    rep=20,
)
@jit(
    out_idx=[-1],
    target="auto",
)
def get_autotuned_kernel(
    N,
    K,
    BLOCK_N=None,
    reduce_threads=None,
):
    dtype = "float16"
    accum_dtype = "float"
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)

            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            C_reduced = T.alloc_local((1,), accum_dtype)
            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        C_accum[0],
                        True,
                        C_reduced[0],
                        tk,
                        dtype="handle",
                    ))

            C[bn * BLOCK_N + tn] = C_reduced[0]

    return main


def check_correctness_and_bench(kernel, N, K, bench_ref=True):
    profiler = kernel.get_profiler()
    profiler.assert_allclose(lambda x, y: x @ y.T, atol=1e-2, rtol=1e-2)
    if bench_ref:
        latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=50)
        print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=50)
    print(f"TileLang Latency: {latency} ms\n")


def main(do_bench: bool = True):
    parser = argparse.ArgumentParser(description="GEMV Example")
    parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
    args, _ = parser.parse_known_args()
    N, K = args.n, args.k
    check_correctness_and_bench(naive_gemv(N, K, 128, 128), N, K)
    check_correctness_and_bench(naive_splitk_gemv(N, K, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv(N, K, 32, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized(N, K, 2, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized_tvm(N, K, 2, 32), N, K)
    check_correctness_and_bench(gemv_alloc_reducer(N, K, block_M=128, block_N=128), N, K)

    print("Test passed!")

    if not do_bench:
        best_result = get_autotuned_kernel(N, K)
        best_config = best_result.config
        kernel = splitk_gemv_vectorized_tvm(N, K, **best_config)
        profiler = kernel.get_profiler()
        latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
        print(f"Torch Latency: {latency} ms")
        tilelang_thread_latency = profiler.do_bench(kernel, warmup=500)
        print(f"TileLang SIMT Latency: {tilelang_thread_latency} ms\n")
        kernel = gemv_alloc_reducer(N, K)
        profiler = kernel.get_profiler()
        tilelang_tile_latency = profiler.do_bench(kernel, warmup=500)
        print(f"TileLang BlockReduce Latency: {tilelang_tile_latency} ms\n")


if __name__ == "__main__":
    main()