example_gemm_sp.py 5.3 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Tile-AI Corporation.
# Licensed under the MIT License.
import argparse

import tilelang
import tilelang.language as T

from tilelang.layout import make_metadata_layout
from tilelang.utils.sparse import compress, randn_semi_sparse
from tilelang.contrib import nvcc
from triton.testing import do_bench

import torch

arch = nvcc.get_target_compute_version()

ARCH_INFO = {"8.0": (16, "int16"), "8.9": (16, "int16"), "9.0": (8, "uint8")}

default_config = {  # take best config from autotune script
    "4090": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 64,
            'num_stages': 1,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 256,
            'block_N': 128,
            'block_K': 64,
            'num_stages': 2,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    },
    "h20": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    }
}


@tilelang.jit(out_idx=[-1])
def matmul_sp_fp16(M, N, K, accum_dtype, block_M, block_N, block_K, num_stages, thread_num, policy,
                   enable_rasterization):
    e_factor, e_dtype = ARCH_INFO[arch]

    @T.prim_func
    def gemm_sp_fp16(
            A_sparse: T.Tensor((M, K // 2), 'float16'),
            E: T.Tensor((M, K // e_factor), e_dtype),
            B: T.Tensor((K, N), 'float16'),
            C: T.Tensor((M, N), accum_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K // 2), 'float16')
            E_shared = T.alloc_shared((block_M, block_K // e_factor), e_dtype)
            B_shared = T.alloc_shared((block_K, block_N), 'float16')
            C_shared = T.alloc_shared((block_M, block_N), accum_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            T.clear(C_local)
            T.disable_warp_group_reg_alloc()
            T.use_swizzle(panel_size=10, enable=enable_rasterization)
            T.annotate_layout({
                E:
                    make_metadata_layout(
                        E, mma_dtype="float16", backend="cutlass", block_k=block_K, arch=arch),
                E_shared:
                    make_metadata_layout(
                        E_shared,
                        mma_dtype="float16",
                        backend="cutlass",
                        block_k=block_K,
                        arch=arch),
            })
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                T.copy(E[by * block_M, k * block_K // e_factor], E_shared)
                T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_local, False, False, policy=policy)

            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return gemm_sp_fp16


def main():
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
    parser.add_argument(
        "--accum_dtype",
        type=str,
        default="float",
        choices=["float", "float16"],
        help="Accumulation datatype")
    parser.add_argument("--cfg", type=str, choices=["4090", "h20"], required=True)
    args = parser.parse_args()
    kernel = matmul_sp_fp16(args.m, args.n, args.k, args.accum_dtype,
                            **default_config[args.cfg][args.accum_dtype])

    a = randn_semi_sparse(args.m, args.k, device='cuda', dtype=torch.half)
    b = torch.randn(args.k, args.n, device='cuda', dtype=torch.half)

    a_sparse, e = compress(
        a,
        transposed=False,
        block_k=default_config[args.cfg][args.accum_dtype]['block_K'],
        arch=arch)
    c = kernel(a_sparse, e, b)

    ref_c = a @ b

    assert not c.isnan().any(), "Reference result contains NaNs, please report an issue"
    torch.testing.assert_close(c, ref_c.to(c.dtype), rtol=1e-2, atol=1e-2)
    print(f"Precision check passed. diff: {(c - ref_c).abs().mean()}")

    latency = do_bench(lambda: kernel(a_sparse, e, b))
    ref_latency = do_bench(lambda: a @ b)

    total_flops = 2 * args.m * args.n * args.k
    tflops = total_flops / latency / 1e9
    ref_tflops = total_flops / ref_latency / 1e9
    print(f"Sparse TFLOPS: {tflops:.2f}, Latency: {latency/1e3} s")
    print(f"Reference TFLOPS: {ref_tflops:.2f}, Latency: {ref_latency/1e3:} s")


if __name__ == "__main__":
    main()