example_gemm_persistent.py 6.11 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import tilelang
import tilelang.language as T
from tilelang.carver.arch import driver
import argparse


@tilelang.jit(out_idx=[-1])
def matmul_non_persistent(M,
                          N,
                          K,
                          block_M,
                          block_N,
                          block_K,
                          threads,
                          num_stages,
                          dtype="float16",
                          accum_dtype="float"):

    @T.prim_func
    def main(
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((K, N), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(T.ceildiv(M, block_M), T.ceildiv(N, block_N), threads=threads) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), dtype)

            T.use_swizzle(10)

            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[bx * block_M, k * block_K], A_shared)
                T.copy(B[k * block_K, by * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local)

            T.copy(C_local, C_shared)
            T.copy(C_shared, C[bx * block_M, by * block_N])

    return main


@tilelang.jit(out_idx=[-1])
def matmul_persistent(M,
                      N,
                      K,
                      block_M,
                      block_N,
                      block_K,
                      threads,
                      num_stages,
                      dtype="float16",
                      accum_dtype="float",
                      use_persistent_primitive=True):

    sm_num = driver.get_num_sms()
    m_blocks = T.ceildiv(M, block_M)
    n_blocks = T.ceildiv(N, block_N)
    waves = T.ceildiv(m_blocks * n_blocks, sm_num)
    group_size = 8

    @T.prim_func
    def main(
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((K, N), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(sm_num, threads=threads) as (block_id):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), dtype)

            for w in T.serial(waves):
                tile_id = sm_num * w + block_id
                bx = (tile_id // group_size) % m_blocks
                by = (tile_id % group_size) + (tile_id // group_size) // m_blocks * group_size

                if bx * block_M < M and by * block_N < N:
                    T.clear(C_local)
                    for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                        T.copy(A[bx * block_M, k * block_K], A_shared)
                        T.copy(B[k * block_K, by * block_N], B_shared)
                        T.gemm(A_shared, B_shared, C_local)

                    T.copy(C_local, C_shared)
                    T.copy(C_shared, C[bx * block_M, by * block_N])

    @T.prim_func
    def main_persistent_primitive(
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((K, N), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(sm_num, threads=threads) as (block_id):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), dtype)

            for bx, by in T.Persistent(
                [T.ceildiv(M, block_M), T.ceildiv(N, block_N)], sm_num, block_id):
                T.clear(C_local)
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    T.copy(A[bx * block_M, k * block_K], A_shared)
                    T.copy(B[k * block_K, by * block_N], B_shared)
                    T.gemm(A_shared, B_shared, C_local)

                T.copy(C_local, C_shared)
                T.copy(C_shared, C[bx * block_M, by * block_N])

    return main_persistent_primitive if use_persistent_primitive else main


def ref_program(A, B):
    return A @ B


def main(M=4096, N=4096, K=4096):
    total_flops = 2 * M * N * K

    BLOCK_M = 128
    BLOCK_N = 256
    BLOCK_K = 64
    threads = 256
    num_stages = 3

    persistent_kernel = matmul_persistent(M, N, K, BLOCK_M, BLOCK_N, BLOCK_K, threads, num_stages)
    persistent_profiler = persistent_kernel.get_profiler(
        tensor_supply_type=tilelang.TensorSupplyType.Randn)
    persistent_profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    print("Persistent GEMM: All check passed.")
    persistent_latency = persistent_profiler.do_bench(warmup=500)
    print(f"Persistent GEMM Latency: {persistent_latency} ms")
    print(f"Persistent GEMM TFlops: {total_flops / persistent_latency * 1e-9} TFlops")

    non_persistent_kernel = matmul_non_persistent(M, N, K, BLOCK_M, BLOCK_N, BLOCK_K, threads,
                                                  num_stages)
    non_persistent_profiler = non_persistent_kernel.get_profiler(
        tensor_supply_type=tilelang.TensorSupplyType.Randn)
    non_persistent_profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    print("Non-Persistent GEMM: All check passed.")
    non_persistent_latency = non_persistent_profiler.do_bench(warmup=500)
    print(f"Non-Persistent GEMM Latency: {non_persistent_latency} ms")
    print(f"Non-Persistent GEMM TFlops: {total_flops / non_persistent_latency * 1e-9} TFlops")

    print(f"Persistent GEMM Speedup: {non_persistent_latency / persistent_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--M', type=int, default=8192, help='M dimension')
    parser.add_argument('--N', type=int, default=8192, help='N dimension')
    parser.add_argument('--K', type=int, default=8192, help='K dimension')
    args = parser.parse_args()
    M, N, K = args.M, args.N, args.K
    main(M, N, K)