example_gemm_autotune.py 9.85 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import itertools
import tilelang as tl
import tilelang.language as T
from tilelang.autotuner import AutoTuner
from tilelang.carver.template import MatmulTemplate
from tilelang.carver.arch import CUDA
from tilelang.carver.arch import CDNA
from tilelang.carver.roller.rasterization import NoRasterization
import torch


def ref_program(A, B):
    """
    Compute the matrix product of A and the transpose of B.

    A and B are expected to be 2-D tensors where A has shape (M, K) and B has shape (N, K). The result is a tensor with shape (M, N) equal to A @ B.T, using the inputs' dtypes.
    """
    return A @ B.T


def get_configs(M, N, K, with_roller=False, topk=20):
    """
    Generate a list of kernel tuning configuration dictionaries for a tiled matrix-multiply.

    When with_roller is True this queries the MatmulTemplate roller to produce up to `topk` recommended
    configurations (device-specific TensorCore-friendly tilings). Each returned dict contains:
      - block_M, block_N, block_K: tile sizes
      - num_stages: pipeline staging (0 means no explicit staging)
      - thread_num: total threads used for the block
      - enable_rasteration: whether a rasterization/swizzle layout was recommended (note spelling)

    When with_roller is False this returns the Cartesian product of a fixed set of candidate
    parameters; the returned dicts use the backward-compatible key name "enable_rasteration" for that flag.

    Parameters:
        M, N, K (int): GEMM dimensions used to generate valid tile sizes.
        with_roller (bool): If True, use MatmulTemplate's roller to generate device-aware hints;
            otherwise use a predefined candidate grid.
        topk (int): Maximum number of roller hints to request when with_roller is True.

    Returns:
        List[dict]: A list of configuration dictionaries as described above.

    Raises:
        ValueError: if with_roller is True but the roller returns no hints.
    """
    if with_roller:
        arch = CUDA("cuda") if torch.version.hip is None else CDNA("hip")
        carve_template = MatmulTemplate(
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
            accum_dtype="float",
        ).with_arch(arch)

        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"
        roller_hints = carve_template.recommend_hints(topk=topk)
        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")
        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
            # block_rows, block_cols represents warp partitioning
            block_rows, block_cols = block_m // warp_m, block_n // warp_n
            config["block_M"] = block_m
            config["block_N"] = block_n
            config["block_K"] = hint.rstep[0]
            config["num_stages"] = hint.pipeline_stage if hint.pipeline_stage > 1 else 0
            config["thread_num"] = block_rows * block_cols * 32
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
    else:
        block_M = [64, 128, 256]
        block_N = [64, 128, 256]
        block_K = [32, 64]
        num_stages = [0, 1, 2, 3]
        thread_num = [128, 256]
        enable_rasterization = [True, False]
        _configs = list(
            itertools.product(
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
                enable_rasterization,
            ))

        configs = [
            {
                "block_M": c[0],
                "block_N": c[1],
                "block_K": c[2],
                "num_stages": c[3],
                "thread_num": c[4],
                "enable_rasteration": c[5],  # keep param name for backward-compat
            } for c in _configs
        ]
    return configs


def get_best_config(M, N, K, with_roller=False):

    def kernel(
        block_M=None,
        block_N=None,
        block_K=None,
        num_stages=None,
        thread_num=None,
        enable_rasteration=None,
    ):
        dtype = "bfloat16"
        accum_dtype = "float"

        @T.prim_func
        def main(
                A: T.Tensor((M, K), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((M, N), dtype),
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
                A_shared = T.alloc_shared((block_M, block_K), dtype)
                B_shared = T.alloc_shared((block_N, block_K), dtype)
                C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                C_shared = T.alloc_shared((block_M, block_N), dtype)
                T.use_swizzle(panel_size=10, enable=enable_rasteration)
                T.clear(C_local)
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                    T.gemm(
                        A_shared,
                        B_shared,
                        C_local,
                        transpose_B=True,
                    )
                T.copy(C_local, C_shared)
                T.copy(C_shared, C[by * block_M, bx * block_N])

        return main

    autotuner = AutoTuner.from_kernel(
        kernel=kernel, configs=get_configs(M, N, K, with_roller)).set_compile_args(
            out_idx=[-1],
            target="auto",
        ).set_profile_args(
            supply_type=tl.TensorSupplyType.Integer,
            ref_prog=ref_program,
            skip_check=False,
        )
    return autotuner.run(warmup=3, rep=20)


def get_heuristic_config() -> dict:
    # Get CUDA device properties
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available")
    device = torch.cuda.current_device()
    sm_major, sm_minor = torch.cuda.get_device_capability(device)
    sm_version = sm_major * 10 + sm_minor
    print(f"CUDA device capability: {sm_version}")
    if sm_version in {80}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 2,
            "thread_num": 128,
            "enable_rasteration": True
        }
    elif sm_version in {90}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 64,
            "num_stages": 3,
            "thread_num": 256,
            "enable_rasteration": True
        }
    else:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 0,
            "thread_num": 128,
            "enable_rasteration": True
        }


@tl.jit(out_idx=[-1])
def matmul(M,
           N,
           K,
           block_M,
           block_N,
           block_K,
           num_stages,
           thread_num,
           enable_rasteration,
           dtype="float16",
           accum_dtype="float"):

    @T.prim_func
    def gemm_autotune(
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((M, N), dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_N, block_K), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_N), dtype)
            T.use_swizzle(panel_size=10, enable=enable_rasteration)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[by * block_M, k * block_K], A_shared)
                T.copy(B[bx * block_N, k * block_K], B_shared)
                T.gemm(
                    A_shared,
                    B_shared,
                    C_local,
                    transpose_B=True,
                )
            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return gemm_autotune


def main(M: int = 4096,
         N: int = 4096,
         K: int = 4096,
         use_autotune: bool = False,
         with_roller: bool = False):
    use_autotune = True
    if use_autotune:
        result = get_best_config(M, N, K, with_roller)
        print(result.config)
        kernel = result.kernel
    else:
        config = get_heuristic_config()
        kernel = matmul(M, N, K, **config)

    # benchmark
    profiler = kernel.get_profiler(tensor_supply_type=tl.TensorSupplyType.Auto)
    tilelang_latency = profiler.do_bench()
    ref_latency = profiler.do_bench(ref_program)
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
    print(f"TileLang latency: {tilelang_latency}")
    print(f"Ref latency: {ref_latency}")
    print(f"TileLang TFlops: {2 * M * N * K / tilelang_latency * 1e-9}")
    print(f"Ref TFlops: {2 * M * N * K / ref_latency * 1e-9}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument("--m", type=int, default=4096, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=4096, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=4096, help="Matrix dimension K")
    parser.add_argument(
        "--use_autotune",
        action="store_true",
        default=False,
        help="Whether to use autotune for matmul configs")
    parser.add_argument(
        "--with_roller",
        action="store_true",
        default=False,
        help="Whether to enable BitBLAS roller for search space")
    args = parser.parse_args()
    main(args.m, args.n, args.k, args.use_autotune, args.with_roller)