example_wy_fast_bwd_split.py 22.3 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Reference: fla/ops/gated_delta_rule/wy_fast.py

import sys  # noqa: F401

import tilelang
import tilelang.language as T

# Add your fla repository path to sys.path
# Currently we use the fla repository from the flash-linear-attention project at commit id 00000000
# sys.path.insert(0, "/home/tzj/flash-linear-attention")
try:
    import fla
    print(fla.__file__)
    from fla.ops.gated_delta_rule.wy_fast import bwd_prepare_wy_repr
except ImportError:
    print("fla not found, using tilelang implementation")
    fla = None

import torch
import torch.nn.functional as F

torch.random.manual_seed(0)
torch.set_printoptions(profile="full")


def prepare_input_fake(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
):
    BS = chunk_size
    K = torch.ones(B, S, H, DK, dtype=input_dtype).cuda()
    V = torch.ones(B, S, H, DV, dtype=input_dtype).cuda()
    Beta = torch.ones(B, S, H, dtype=input_dtype).cuda()
    G = torch.ones(B, S, H, dtype=gate_dtype).cuda()
    A = torch.ones(B, S, H, BS, dtype=input_dtype).cuda()
    dw = torch.ones(B, S, H, DK, dtype=input_dtype).cuda()
    du = torch.ones(B, S, H, DV, dtype=input_dtype).cuda()
    return K, V, Beta, G, A, dw, du


def prepare_input(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
):
    BS = chunk_size
    K = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    K = F.normalize(K, dim=-1, p=2)
    V = torch.randn(B, S, H, DV, dtype=input_dtype).cuda()
    V = F.normalize(V, dim=-1, p=2)
    Beta = torch.randn(B, S, H, dtype=input_dtype).cuda()
    G = torch.randn(B, S, H, dtype=gate_dtype).cuda()
    A = torch.randn(B, S, H, BS, dtype=input_dtype).cuda()
    dw = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    du = torch.randn(B, S, H, DV, dtype=input_dtype).cuda()
    return K, V, Beta, G, A, dw, du


def prepare_output(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    output_dtype,
    gate_dtype,
    state_dtype,
):
    dk = torch.empty(B, S, H, DK, dtype=output_dtype).cuda()
    dv = torch.empty(B, S, H, DV, dtype=output_dtype).cuda()
    dbeta = torch.empty(B, S, H, dtype=output_dtype).cuda()
    dg = torch.empty(B, S, H, dtype=gate_dtype).cuda()
    return dk, dv, dbeta, dg


@tilelang.jit(
    out_idx=[-5, -4, -3, -2, -1],
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True
    })
def tilelang_wy_fast_bwd(
    # task config
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
    chunk_size,
    # kernel config
    block_DK=64,
    block_DV=64,
    threads=128,
    num_stages=0,
):
    block_S = chunk_size
    BS = block_S

    K_shape = (B, S, H, DK)
    V_shape = (B, S, H, DV)
    Beta_shape = (B, S, H)
    G_shape = (B, S, H)
    A_shape = (B, S, H, BS)
    dw_shape = (B, S, H, DK)
    du_shape = (B, S, H, DV)

    dk_shape = (B, S, H, DK)
    dv_shape = (B, S, H, DV)
    dbeta_shape = (B, S, H)
    dg_shape = (B, S, H)
    dA_shape = (B, S, H, BS)

    @T.prim_func
    def kernel(
            # input
            K: T.Tensor(K_shape, dtype=input_dtype),
            V: T.Tensor(V_shape, dtype=input_dtype),
            Beta: T.Tensor(Beta_shape, dtype=input_dtype),
            G: T.Tensor(G_shape, dtype=gate_dtype),
            A: T.Tensor(A_shape, dtype=input_dtype),
            dw: T.Tensor(dw_shape, dtype=input_dtype),
            du: T.Tensor(du_shape, dtype=input_dtype),
            # output
            dA: T.Tensor(dA_shape, dtype=input_dtype),
            dk: T.Tensor(dk_shape, dtype=output_dtype),
            dv: T.Tensor(dv_shape, dtype=output_dtype),
            dbeta: T.Tensor(dbeta_shape, dtype=output_dtype),
            dg: T.Tensor(dg_shape, dtype=gate_dtype),
    ):
        with T.Kernel(T.ceildiv(S, block_S), B * H, threads=threads) as (bs, bbh):
            bb, bh = bbh // H, bbh % H

            A_shared = T.alloc_shared((block_S, block_S), dtype=input_dtype)
            K_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            K_shared_beta_g = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            V_shared = T.alloc_shared((block_S, block_DV), dtype=input_dtype)
            V_shared_beta = T.alloc_shared((block_S, block_DV), dtype=input_dtype)
            Beta_shared = T.alloc_shared((block_S,), dtype=input_dtype)
            G_shared = T.alloc_shared((block_S,), dtype=gate_dtype)
            G_shared_exp = T.alloc_shared((block_S,), dtype=gate_dtype)
            dw_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            du_shared = T.alloc_shared((block_S, block_DV), dtype=input_dtype)

            dA_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)
            dk_fragment = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            dk_fragment_beta_g = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            dv_fragment = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            dv_fragment_beta = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            dbeta_fragment_k = T.alloc_fragment((block_S,), dtype=accum_dtype)
            dbeta_fragment_v = T.alloc_fragment((block_S,), dtype=accum_dtype)
            dbeta_fragment_reduce_tmpk = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            dbeta_fragment_reduce_tmpv = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            dg_fragment = T.alloc_fragment((block_S,), dtype=gate_dtype)
            dg_fragment_reduce_tmp = T.alloc_fragment((block_S, block_DK), dtype=gate_dtype)

            T.use_swizzle(10)

            T.clear(dA_fragment)
            T.clear(dk_fragment)
            T.clear(dk_fragment_beta_g)
            T.clear(dv_fragment)
            T.clear(dv_fragment_beta)
            T.clear(dbeta_fragment_k)
            T.clear(dbeta_fragment_v)
            T.clear(dg_fragment)

            T.copy(A[bb, bs * block_S:(bs + 1) * block_S, bh, :], A_shared)
            for i_s in T.Parallel(block_S):
                Beta_shared[i_s] = Beta[bb, bs * block_S + i_s, bh]
                G_shared[i_s] = G[bb, bs * block_S + i_s, bh]
                G_shared_exp[i_s] = T.exp(G[bb, bs * block_S + i_s, bh])

            # Update dk
            for i_k in T.Pipelined(T.ceildiv(DK, block_DK), num_stages=num_stages):
                T.copy(
                    K[bb, bs * block_S:(bs + 1) * block_S, bh, i_k * block_DK:(i_k + 1) * block_DK],
                    K_shared)
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    K_shared_beta_g[i_s,
                                    i_k2] = K_shared[i_s,
                                                     i_k2] * Beta_shared[i_s] * G_shared_exp[i_s]
                T.copy(
                    dw[bb, bs * block_S:(bs + 1) * block_S, bh,
                       i_k * block_DK:(i_k + 1) * block_DK], dw_shared)
                T.gemm(dw_shared, K_shared_beta_g, dA_fragment, transpose_B=True)
                T.gemm(A_shared, dw_shared, dk_fragment_beta_g, clear_accum=True, transpose_A=True)
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dk_fragment[
                        i_s,
                        i_k2] = dk_fragment_beta_g[i_s, i_k2] * Beta_shared[i_s] * G_shared_exp[i_s]
                # for i_s, i_k2 in T.Parallel(block_S, block_DK):
                #     dbeta_fragment[i_s] = dbeta_fragment[i_s] + dk_fragment_beta_g[i_s, i_k2] * K_shared[i_s, i_k2] * G_shared_exp[i_s]
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dbeta_fragment_reduce_tmpk[i_s, i_k2] = dk_fragment_beta_g[
                        i_s, i_k2] * K_shared[i_s, i_k2] * G_shared_exp[i_s]
                T.reduce_sum(dbeta_fragment_reduce_tmpk, dbeta_fragment_k, dim=1, clear=False)

                # for i_s, i_k2 in T.Parallel(block_S, block_DK):
                #     dg_fragment[i_s] = dg_fragment[i_s] + dk_fragment_beta_g[i_s, i_k2] * K_shared[i_s, i_k2] * G_shared_exp[i_s] * Beta_shared[i_s]
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dg_fragment_reduce_tmp[i_s, i_k2] = dk_fragment_beta_g[i_s, i_k2] * K_shared[
                        i_s, i_k2] * G_shared_exp[i_s] * Beta_shared[i_s]
                T.reduce_sum(dg_fragment_reduce_tmp, dg_fragment, dim=1, clear=False)

                # correct dk
                T.copy(
                    dk_fragment, dk[bb, bs * block_S:(bs + 1) * block_S, bh,
                                    i_k * block_DK:(i_k + 1) * block_DK])

            # Update dv
            for i_v in T.Pipelined(T.ceildiv(DV, block_DV), num_stages=num_stages):
                T.copy(
                    V[bb, bs * block_S:(bs + 1) * block_S, bh, i_v * block_DV:(i_v + 1) * block_DV],
                    V_shared)
                for i_s, i_v2 in T.Parallel(block_S, block_DV):
                    V_shared_beta[i_s, i_v2] = V_shared[i_s, i_v2] * Beta_shared[i_s]
                T.copy(
                    du[bb, bs * block_S:(bs + 1) * block_S, bh,
                       i_v * block_DV:(i_v + 1) * block_DV], du_shared)
                T.gemm(du_shared, V_shared_beta, dA_fragment, transpose_B=True)
                T.gemm(A_shared, du_shared, dv_fragment_beta, clear_accum=True, transpose_A=True)
                for i_s, i_v2 in T.Parallel(block_S, block_DV):
                    dv_fragment[i_s, i_v2] = dv_fragment_beta[i_s, i_v2] * Beta_shared[i_s]
                # for i_s, i_v2 in T.Parallel(block_S, block_DV):
                #     dbeta_fragment[i_s] = dbeta_fragment[i_s] + dv_fragment_beta[i_s, i_v2] * V_shared[i_s, i_v2]
                for i_s, i_v2 in T.Parallel(block_S, block_DV):
                    dbeta_fragment_reduce_tmpv[i_s,
                                               i_v2] = dv_fragment_beta[i_s, i_v2] * V_shared[i_s,
                                                                                              i_v2]
                T.reduce_sum(dbeta_fragment_reduce_tmpv, dbeta_fragment_v, dim=1, clear=False)

                T.copy(
                    dv_fragment, dv[bb, bs * block_S:(bs + 1) * block_S, bh,
                                    i_v * block_DV:(i_v + 1) * block_DV])

            # Temporary store dbeta, dg and dA
            for i_s in T.Parallel(block_S):
                dbeta[bb, bs * block_S + i_s, bh] = dbeta_fragment_k[i_s] + dbeta_fragment_v[i_s]
                dg[bb, bs * block_S + i_s, bh] = dg_fragment[i_s]
            # correct dA
            T.copy(dA_fragment, dA[bb, bs * block_S:(bs + 1) * block_S, bh, :])

    return kernel


@tilelang.jit(
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True
    })
def tilelang_wy_fast_bwd_split(
    # task config
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
    chunk_size,
    # kernel config
    block_DK=64,
    block_DV=64,
    threads=128,
    num_stages=0,
):
    block_S = chunk_size
    BS = block_S

    K_shape = (B, S, H, DK)
    V_shape = (B, S, H, DV)
    Beta_shape = (B, S, H)
    G_shape = (B, S, H)
    A_shape = (B, S, H, BS)
    dw_shape = (B, S, H, DK)
    du_shape = (B, S, H, DV)

    dk_shape = (B, S, H, DK)
    dv_shape = (B, S, H, DV)
    dbeta_shape = (B, S, H)
    dA_shape = (B, S, H, BS)

    @T.prim_func
    def kernel(
            # input
            K: T.Tensor(K_shape, dtype=input_dtype),
            V: T.Tensor(V_shape, dtype=input_dtype),
            Beta: T.Tensor(Beta_shape, dtype=input_dtype),
            G: T.Tensor(G_shape, dtype=gate_dtype),
            A: T.Tensor(A_shape, dtype=input_dtype),
            dw: T.Tensor(dw_shape, dtype=input_dtype),
            du: T.Tensor(du_shape, dtype=input_dtype),
            dA: T.Tensor(dA_shape, dtype=input_dtype),
            dk: T.Tensor(dk_shape, dtype=output_dtype),
            dv: T.Tensor(dv_shape, dtype=output_dtype),
            dbeta_k: T.Tensor(dbeta_shape, dtype=output_dtype),
            dg_A_positive: T.Tensor(dA_shape, dtype=gate_dtype),
            dg_A_negative: T.Tensor(dA_shape, dtype=gate_dtype),
    ):
        with T.Kernel(T.ceildiv(S, block_S), B * H, threads=threads) as (bs, bbh):
            bb, bh = bbh // H, bbh % H

            A_shared = T.alloc_shared((block_S, block_S), dtype=input_dtype)
            A_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)
            K_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            K_shared_beta = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            dA_shared = T.alloc_shared((block_S, block_S), dtype=input_dtype)
            dA_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)
            dA_A_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)
            dA_A_fragment_1 = T.alloc_fragment((block_S,), dtype=accum_dtype)
            dA_A_fragment_2 = T.alloc_fragment((block_S,), dtype=accum_dtype)
            dk_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            dk_shared_beta = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            dk_fragment = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            dk_fragment_beta = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            Beta_shared = T.alloc_shared((block_S,), dtype=input_dtype)
            dbeta_fragment_reduce_tmpk = T.alloc_fragment((block_S, block_DK), dtype=accum_dtype)
            dbeta_fragment_k = T.alloc_fragment((block_S,), dtype=accum_dtype)
            G_shared = T.alloc_shared((block_S,), dtype=gate_dtype)
            G_shared_exp = T.alloc_shared((block_S,), dtype=gate_dtype)

            T.clear(dbeta_fragment_reduce_tmpk)
            T.clear(dbeta_fragment_k)
            T.clear(dA_A_fragment_1)
            T.clear(dA_A_fragment_2)

            T.copy(A[bb, bs * block_S:(bs + 1) * block_S, bh, :], A_shared)
            for i_s in T.Parallel(block_S):
                Beta_shared[i_s] = Beta[bb, bs * block_S + i_s, bh]
                G_shared[i_s] = G[bb, bs * block_S + i_s, bh]
            for i_s in T.Parallel(block_S):
                G_shared_exp[i_s] = T.exp(G_shared[i_s])

            # Load intermediate results
            # for i_s in T.Parallel(block_S):
            # dbeta_fragment[i_s] = dbeta[bb, bs * block_S + i_s, bh]
            # dg_fragment[i_s] = dg[bb, bs * block_S + i_s, bh]
            T.copy(dA[bb, bs * block_S:(bs + 1) * block_S, bh, :], dA_shared)
            # T.copy(dA_shared, dA[bb, bs * block_S:(bs + 1) * block_S, bh, :])

            # Update dA
            T.copy(dA_shared, dA_fragment)

            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                with T.If(i_s1 <= i_s2):  # noqa: SIM117
                    with T.Then():
                        dA_fragment[i_s1, i_s2] = 0
            T.copy(dA_fragment, dA_shared)
            T.gemm(dA_shared, A_shared, dA_fragment, clear_accum=True, transpose_B=True)
            T.copy(dA_fragment, dA_shared)
            T.gemm(A_shared, dA_shared, dA_fragment, clear_accum=True, transpose_A=True)
            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                with T.If(i_s1 <= i_s2):
                    with T.Then():
                        dA_fragment[i_s1, i_s2] = 0
                    with T.Else():
                        dA_fragment[i_s1, i_s2] = -dA_fragment[i_s1, i_s2]

            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                with T.If(G[bb, bs * block_S + i_s1, bh] - G[bb, bs * block_S + i_s2, bh] <= 0):
                    with T.Then():
                        dA_fragment[i_s1, i_s2] *= T.exp(G[bb, bs * block_S + i_s1, bh] -
                                                         G[bb, bs * block_S + i_s2, bh])
                    with T.Else():
                        dA_fragment[i_s1, i_s2] = 0
            T.copy(dA_fragment, dA_shared)

            # acceptable dA diff
            # T.copy(dA_fragment, dA[bb, bs * block_S:(bs + 1) * block_S, bh, :])

            # Update dk using previous dk
            T.clear(A_fragment)
            for i_k in T.Pipelined(T.ceildiv(DK, block_DK), num_stages=num_stages):
                T.copy(
                    K[bb, bs * block_S:(bs + 1) * block_S, bh, i_k * block_DK:(i_k + 1) * block_DK],
                    K_shared)
                T.copy(
                    dk[bb, bs * block_S:(bs + 1) * block_S, bh,
                       i_k * block_DK:(i_k + 1) * block_DK], dk_shared)
                T.copy(dk_shared, dk_fragment)
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    K_shared_beta[i_s, i_k2] = K_shared[i_s, i_k2] * Beta_shared[i_s]
                T.gemm(K_shared_beta, K_shared, A_fragment, transpose_B=True)
                T.gemm(dA_shared, K_shared, dk_fragment_beta, clear_accum=True)
                # for i_s, i_k2 in T.Parallel(block_S, block_DK):
                #     dbeta_fragment[i_s] = dbeta_fragment[i_s] + dk_fragment_beta[i_s, i_k2] * K_shared[i_s, i_k2]
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dbeta_fragment_reduce_tmpk[i_s,
                                               i_k2] = dk_fragment_beta[i_s, i_k2] * K_shared[i_s,
                                                                                              i_k2]
                T.reduce_sum(dbeta_fragment_reduce_tmpk, dbeta_fragment_k, dim=1, clear=False)
                T.gemm(dA_shared, K_shared_beta, dk_fragment, transpose_A=True)
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dk_shared_beta[i_s, i_k2] = dk_fragment_beta[i_s, i_k2] * Beta_shared[i_s]
                for i_s, i_k2 in T.Parallel(block_S, block_DK):
                    dk_fragment[i_s, i_k2] = dk_fragment[i_s, i_k2] + dk_shared_beta[i_s, i_k2]
                T.copy(
                    dk_fragment, dk[bb, bs * block_S:(bs + 1) * block_S, bh,
                                    i_k * block_DK:(i_k + 1) * block_DK])

            # Update dg and dbeta
            T.copy(A_fragment, A_shared)
            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                dA_A_fragment[i_s1, i_s2] = dA_fragment[i_s1, i_s2] * A_fragment[i_s1, i_s2]
            # Note: Reduce operation now not supported in shared memory
            # FIXME: reduce will cause incorrect result when dim != -1
            T.reduce_sum(dA_A_fragment, dA_A_fragment_1, dim=1)
            T.reduce_sum(dA_A_fragment, dA_A_fragment_2, dim=0)

            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                dg_A_positive[bb, bs * block_S + i_s1, bh, i_s2] = dA_A_fragment[i_s1, i_s2]
                dg_A_negative[bb, bs * block_S + i_s2, bh, i_s1] = dA_A_fragment[i_s1, i_s2]

            for i_s in T.Parallel(block_S):
                dbeta_k[bb, bs * block_S + i_s, bh] = dbeta_fragment_k[i_s]

    return kernel


def run_test(
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    state_dtype,
    chunk_size,
    block_DK=64,
    block_DV=64,
    threads=128,
    num_stages=0,
):
    K, V, Beta, G, A, dw, du = prepare_input(B, S, H, DK, DV, chunk_size,
                                             getattr(torch, input_dtype),
                                             getattr(torch, output_dtype),
                                             getattr(torch,
                                                     accum_dtype), getattr(torch, gate_dtype),
                                             getattr(torch, state_dtype))
    dk_ref, dv_ref, dbeta_ref, dg_ref = prepare_output(B, S, H, DK, DV, chunk_size,
                                                       getattr(torch, output_dtype),
                                                       getattr(torch, gate_dtype),
                                                       getattr(torch, state_dtype))
    dk_tilelang, dv_tilelang, dbeta_tilelang, dg_tilelang = prepare_output(
        B, S, H, DK, DV, chunk_size, getattr(torch, output_dtype), getattr(torch, gate_dtype),
        getattr(torch, state_dtype))
    BS = chunk_size
    dA_tilelang = torch.empty(B, S, H, BS, dtype=getattr(torch, input_dtype)).cuda()
    dbeta_tilelang_k = torch.empty(B, S, H, dtype=getattr(torch, output_dtype)).cuda()
    dg_tilelang_A_positive = torch.empty(B, S, H, BS, dtype=getattr(torch, gate_dtype)).cuda()
    dg_tilelang_A_negative = torch.empty(B, S, H, BS, dtype=getattr(torch, gate_dtype)).cuda()

    # ref
    dk_ref, dv_ref, dbeta_ref, dg_ref = bwd_prepare_wy_repr(
        K, V, G, Beta, A, dw, du, cu_seqlens=None)

    # tilelang
    kernel = tilelang_wy_fast_bwd(B, S, H, DK, DV, input_dtype, output_dtype, accum_dtype,
                                  gate_dtype, state_dtype, chunk_size, block_DK, block_DV, threads,
                                  num_stages)
    dA_tilelang, dk_tilelang, dv_tilelang, dbeta_tilelang, dg_tilelang = kernel(
        K, V, Beta, G, A, dw, du)
    torch.cuda.synchronize()
    kernel_split = tilelang_wy_fast_bwd_split(B, S, H, DK, DV, input_dtype, output_dtype,
                                              accum_dtype, gate_dtype, state_dtype, chunk_size,
                                              block_DK, block_DV, threads, num_stages)
    kernel_split(K, V, Beta, G, A, dw, du, dA_tilelang, dk_tilelang, dv_tilelang, dbeta_tilelang_k,
                 dg_tilelang_A_positive, dg_tilelang_A_negative)
    torch.cuda.synchronize()

    dbeta_tilelang = dbeta_tilelang_k + dbeta_tilelang
    dg_tilelang = dg_tilelang + dg_tilelang_A_positive.sum(dim=-1) - dg_tilelang_A_negative.sum(
        dim=-1)

    from utils import assert_similar
    assert_similar(dk_ref, dk_tilelang, eps=1e-5, name="dk", raise_assert=False)
    assert_similar(dv_ref, dv_tilelang, eps=1e-5, name="dv", raise_assert=False)
    assert_similar(dbeta_ref, dbeta_tilelang, eps=1e-5, name="dbeta", raise_assert=False)
    assert_similar(dg_ref, dg_tilelang, eps=1e-5, name="dg", raise_assert=False)


def main():
    DK = 128
    DV = 128
    run_test(
        B=1,
        S=32768,
        H=8,
        DK=DK,
        DV=DV,
        input_dtype="bfloat16",
        output_dtype="bfloat16",
        accum_dtype="float32",
        gate_dtype="float32",
        state_dtype="float32",
        chunk_size=64,
        block_DK=32,
        block_DV=32,
        threads=128,
        num_stages=0,
    )


if __name__ == "__main__":
    main()