"vscode:/vscode.git/clone" did not exist on "e3b0039ed1645bd245e23340572969464da4e3b2"
example_mha_inference.py 14.5 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from functools import partial

num_split = 4


@tilelang.jit(out_idx=[5])
def flashattn(batch, heads, seqlen_q, seqlen_kv, dim, is_causal, block_M, block_N):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape_q = [batch, seqlen_q, heads, dim]
    shape_kv = [batch, seqlen_kv, heads, dim]
    part_shape = [batch, seqlen_q, heads, num_split, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.macro
    def MMA0(
        K: T.Tensor(shape_kv, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        mid: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            K[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], K_shared)
        # TODO: Handle causal split case
        if is_causal:
            for i, j in T.Parallel(block_M, block_N):
                acc_s[i, j] = T.if_then_else(mid * block_M + i >= k * block_N + j, 0,
                                             -T.infinity(acc_s.dtype))
        else:
            T.clear(acc_s)
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(shape_kv, dtype),
        V_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            V[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            scores_max: T.FragmentBuffer([block_M], accum_dtype),
            scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
            scores_sum: T.FragmentBuffer([block_M], accum_dtype),
            logsum: T.FragmentBuffer([block_M], accum_dtype),
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.macro
    def flash_attn_split(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
    ):
        with T.Kernel(
                T.ceildiv(seqlen_q, block_M), heads * batch, num_split,
                threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            mid = bx
            hid = by % heads
            bid = by // heads
            sid = bz

            # NOTE(wt): tma barrier has some problems with padded dimensions (seq_q here) currently
            # disable relevant tma copy and use SIMT as fallback for now
            T.copy(Q[bid, mid * block_M:(mid + 1) * block_M, hid, :], Q_shared, disable_tma=True)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            # TODO: Handle causal split case
            loop_range = (
                T.min(T.ceildiv(seqlen_kv, block_N), T.ceildiv(
                    (mid + 1) * block_M, block_N)) if is_causal else T.ceildiv(
                        (seqlen_kv // num_split), block_N))

            for k in T.Pipelined(loop_range, num_stages=2):
                MMA0(K, Q_shared, K_shared, acc_s, k, mid, hid, bid, sid)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, hid, bid, sid)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, glse[bid, hid, sid, mid * block_M:(mid + 1) * block_M])
            T.copy(acc_o, O_shared)
            T.copy(
                O_shared,
                Output_partial[bid, mid * block_M:(mid + 1) * block_M, hid, sid, :],
                disable_tma=True)

    @T.macro
    def combine(
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_q, dtype),
    ):
        with T.Kernel(T.ceildiv(seqlen_q, block_M), heads, batch, threads=128) as (bx, by, bz):
            po_local = T.alloc_fragment([block_M, dim], dtype)
            po_shared = T.alloc_shared([block_M, dim], dtype)
            o_accum_local = T.alloc_fragment([block_M, dim], accum_dtype)
            o_shared = T.alloc_shared([block_M, dim], dtype)
            lse_local = T.alloc_fragment([num_split, block_M], dtype)
            lse_local_split = T.alloc_fragment([block_M], accum_dtype)
            lse_logsum_local = T.alloc_fragment([block_M], accum_dtype)
            lse_max_local = T.alloc_fragment([block_M], accum_dtype)
            scale_local = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({
                o_accum_local: T.Fragment(o_accum_local.shape, forward_thread_fn=lambda i, j: i),
                o_shared: tilelang.layout.make_swizzled_layout(o_shared),
                po_shared: tilelang.layout.make_swizzled_layout(po_shared),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            T.copy(glse[
                bz,
                by,
                :,
                bx * block_M:(bx + 1) * block_M,
            ], lse_local)
            T.reduce_max(lse_local, lse_max_local, dim=0, clear=False)
            for k in T.Pipelined(num_split):
                T.copy(lse_local[k, :], lse_local_split)
                for i in T.Parallel(block_M):
                    lse_logsum_local[i] += T.exp2(lse_local_split[i] - lse_max_local[i])
            for i in T.Parallel(block_M):
                lse_logsum_local[i] = T.log2(lse_logsum_local[i]) + lse_max_local[i]
            for k in T.Pipelined(num_split, num_stages=2):
                T.copy(
                    Output_partial[bz, bx * block_M:(bx + 1) * block_M, by, k, :],
                    po_shared,
                    disable_tma=True)
                T.copy(po_shared, po_local)
                for i in T.Parallel(block_M):
                    lse_local_split[i] = lse_local[k, i]
                for i in T.Parallel(block_M):
                    scale_local[i] = T.exp2(lse_local_split[i] - lse_logsum_local[i])
                for i, j in T.Parallel(block_M, dim):
                    o_accum_local[i, j] += po_local[i, j] * scale_local[i]
            T.copy(o_accum_local, o_shared)
            T.copy(o_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :], disable_tma=True)

    @T.prim_func
    def flashattn_mha_inference(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),  # [batch, seqlen_q, heads, num_split, dim]
            Output: T.Tensor(shape_q, dtype),
    ):
        flash_attn_split(Q, K, V, glse, Output_partial)
        combine(glse, Output_partial, Output)

    return flashattn_mha_inference


def ref_program(Q, K, V, glse, Output_partial, causal):
    assert causal is False
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


def reduce_ref(Q, K, V, glse, Output_partial, causal):
    o = torch.empty_like(Output_partial[:, :, :, 0, :]).fill_(0)
    lse_logsum = torch.empty_like(glse[:, :, 0, :]).fill_(0)  # [batch, seqlen_q, heads]
    lse_max = glse.max(dim=2, keepdim=False).values
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        lse_logsum += torch.exp2(lse - lse_max)
    lse_logsum = torch.log2(lse_logsum) + lse_max
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        scale = torch.exp2(lse - lse_logsum)  # [batch, heads, seqlen_q]
        o += Output_partial[:, :, :, ks, :] * scale[:, :, :, None].transpose(1, 2)
    return o.to(torch.float16)


def flash_split_ref(Q, K, V, causal):
    # [batch, seqlen_q, heads, dim]
    batch = Q.size(0)
    block_M = Q.size(1)
    nheads = Q.size(2)
    dim = Q.size(3)
    block_N = 128
    seqlen_kv = K.size(1)

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    acc_s = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float)
    acc_s_cast = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float16)
    acc_o = torch.empty((batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    scores_max = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_max_prev = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_scale = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_sum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    logsum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    gacc_o = torch.empty((num_split, batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    glogsum = torch.empty((num_split, batch, nheads, block_M), device="cuda", dtype=torch.float)

    Q_ = Q * scale

    for ks in range(num_split):
        acc_o.fill_(0)
        logsum.fill_(0)
        scores_max.fill_(float('-inf'))
        scores_max_prev.fill_(float('-inf'))
        for i in range(int((seqlen_kv // num_split) / block_N)):
            acc_s.fill_(0)
            acc_s = torch.einsum('bqhd,bkhd->bhqk', Q_,
                                 K[:, (seqlen_kv // num_split) * ks +
                                   i * block_N:(seqlen_kv // num_split) * ks +
                                   (i + 1) * block_N, :, :])  # [batch, seqlen, nheads, block_N]
            scores_max_prev = scores_max
            scores_max = acc_s.max(dim=-1, keepdim=False).values  # [blockM]
            scores_scale = torch.exp2(scores_max_prev - scores_max)
            acc_o *= scores_scale[:, :, :, None].transpose(1, 2)
            acc_s = torch.exp2(acc_s - scores_max[:, :, :, None])
            acc_s_cast = acc_s.to(torch.float16)
            acc_o += torch.einsum(
                'bhqk,bkhd->bqhd', acc_s_cast,
                V[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
                  (i + 1) * block_N, :, :])
            scores_sum = acc_s.sum(dim=-1, keepdim=False)
            logsum = logsum * scores_scale + scores_sum
        acc_o /= logsum[:, :, :, None].transpose(1, 2)
        logsum = torch.log2(logsum) + scores_max
        gacc_o[ks, :, :, :, :] = acc_o
        glogsum[ks, :, :, :] = logsum

    return glogsum.to(torch.float16).permute(1, 2, 0,
                                             3), gacc_o.to(torch.float16).permute(1, 2, 3, 0, 4)


def main():
    BATCH, H, Q_CTX, KV_CTX, D_HEAD = 1, 32, 128, 8192, 128
    causal = False
    flops_per_matmul = 2.0 * BATCH * H * Q_CTX * KV_CTX * D_HEAD
    total_flops = 2 * flops_per_matmul
    if causal:
        total_flops *= 0.5
    BLOCK_M = 128
    BLOCK_N = 64  # if D_HEAD <= 128 else 32
    kernel = flashattn(BATCH, H, Q_CTX, KV_CTX, D_HEAD, causal, BLOCK_M, BLOCK_N)
    ref_fn = partial(ref_program, causal=causal)
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)
    profiler.assert_allclose(ref_fn, rtol=0.01, atol=0.01)
    print("All checks passed!")

    latency = profiler.do_bench(ref_fn, warmup=500)
    print("{:.2f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = profiler.do_bench(n_warmup=10, n_repeat=10)
    print("{:.4f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    main()