example_mha_fwd_varlen.py 11.5 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# ruff: noqa
import torch
import tilelang
import tilelang.language as T
import tilelang.testing
import argparse

import torch
from einops import rearrange, repeat
from varlen_utils import generate_random_padding_mask, generate_qkv


def attention_ref(
        q,
        k,
        v,
        query_padding_mask=None,
        key_padding_mask=None,
        causal=False,
        window_size=(-1, -1),  # -1 means infinite window size
        upcast=True,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    dim = q.shape[-1]
    scale = (1.0 / dim)**0.5  # log2(e)
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    scores = torch.einsum("bthd,bshd->bhts", q, k)
    if key_padding_mask is not None:
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
        # scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0)
    scores = scores * scale
    attention = torch.softmax(scores, dim=-1).to(v.dtype)

    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
    output = torch.einsum("bhts,bshd->bthd", attention, v)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


@tilelang.jit(
    out_idx=[6], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
def flashattn(batch_size,
              UQ,
              UKV,
              heads,
              dim,
              is_causal,
              block_M=64,
              block_N=64,
              num_stages=0,
              threads=32):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    q_shape = [UQ, heads, dim]
    k_shape = [UKV, heads, dim]
    v_shape = [UKV, heads, dim]
    o_shape = [UQ, heads, dim]

    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def main(
            Q_unpad: T.Tensor(q_shape, dtype),
            K_unpad: T.Tensor(k_shape, dtype),
            V_unpad: T.Tensor(v_shape, dtype),
            cu_seqlens_q: T.Tensor([batch_size + 1], "int32"),
            cu_seqlens_k: T.Tensor([batch_size + 1], "int32"),
            max_seqlen_q: T.int32,
            Output_unpad: T.Tensor(o_shape, dtype),
    ):
        with T.Kernel(
                T.ceildiv(max_seqlen_q, block_M), heads, batch_size,
                threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype, "shared")
            K_shared = T.alloc_shared([block_N, dim], dtype, "shared")
            V_shared = T.alloc_shared([block_N, dim], dtype, "shared")
            O_shared = T.alloc_shared([block_M, dim], dtype, "shared")
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            batch_idx = bz
            head_idx = by

            q_start_idx = cu_seqlens_q[batch_idx]
            k_start_idx = cu_seqlens_k[batch_idx]
            v_start_idx = cu_seqlens_k[batch_idx]
            q_end_idx = cu_seqlens_q[batch_idx + 1]
            k_end_idx = cu_seqlens_k[batch_idx + 1]
            v_end_idx = cu_seqlens_k[batch_idx + 1]

            q_current_seqlen = q_end_idx - q_start_idx
            k_current_seqlen = k_end_idx - k_start_idx
            v_current_seqlen = v_end_idx - v_start_idx

            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i < q_current_seqlen:
                    Q_shared[i, d] = Q_unpad[q_start_idx + bx * block_M + i, head_idx, d]
                else:
                    Q_shared[i, d] = 0

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(k_current_seqlen, block_N)

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                # Q * K
                for i, d in T.Parallel(block_N, dim):
                    if k * block_N + i < k_current_seqlen:
                        K_shared[i, d] = K_unpad[k_start_idx + k * block_N + i, head_idx, d]
                    else:
                        K_shared[i, d] = 0
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else((bx * block_M + i >= k * block_N + j) and
                                                     (bx * block_M + i >= q_current_seqlen or
                                                      k * block_N + j >= k_current_seqlen),
                                                     -T.infinity(acc_s.dtype), 0)
                else:
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else((bx * block_M + i >= q_current_seqlen or
                                                      k * block_N + j >= k_current_seqlen),
                                                     -T.infinity(acc_s.dtype), 0)

                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                # Softmax
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # in the first ceil_div(kBlockM, kBlockN) steps.
                # for i in T.Parallel(block_M):
                #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, block_N):
                    # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                    # max * log_2(e)) This allows the compiler to use the ffma
                    # instruction instead of fadd and fmul separately.
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                T.copy(acc_s, acc_s_cast)

                # Rescale
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                # V * softmax(Q * K)
                for i, d in T.grid(block_N, dim):
                    if k * block_N + i < v_current_seqlen:
                        V_shared[i, d] = V_unpad[v_start_idx + k * block_N + i, head_idx, d]
                    else:
                        V_shared[i, d] = 0

                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)

            for i, d in T.Parallel(block_M, dim):
                if bx * block_M + i < q_current_seqlen:
                    Output_unpad[q_start_idx + bx * block_M + i, head_idx, d] = O_shared[i, d]

    return main


def main(batch: int = 8, heads: int = 64, seq_len: int = 2048, dim: int = 128):
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul

    tilelang.testing.set_random_seed(0)

    causal = False
    if causal:
        total_flops *= 0.5

    dtype = torch.float16
    device = torch.device("cuda")
    window_size = (-1, -1)

    q = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
    k = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
    v = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)

    query_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(
        q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)

    UQ = q_unpad.shape[0]  # unpadded query length
    UK = k_unpad.shape[0]  # unpadded key length
    UKV = k_unpad.shape[0]  # unpadded query key length

    kernel = flashattn(batch, UQ, UKV, heads, dim, causal)

    out_unpad = kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q)
    out = output_pad_fn(out_unpad)

    out_ref, _ = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        causal=causal,
    )
    torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=1e-2)

    import flash_attn

    fla_out_unpad = flash_attn.flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
    )
    fla_out = output_pad_fn(fla_out_unpad)
    torch.testing.assert_close(out, fla_out, rtol=1e-2, atol=1e-2)

    print("All checks passed.✅")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=64, help='heads')
    parser.add_argument('--seq_len', type=int, default=2048, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')

    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim)