example_tilelang_nsa_decode.py 7.18 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# ruff: noqa
import torch
from reference import naive_nsa_simple_inference
import tilelang
from tilelang import language as T
import tilelang.testing

tilelang.testing.set_random_seed(42)


# TODO(lei): workaround, as threads is not divisible by warp group size,
# auto warp specialization may have some bugs.
@tilelang.jit(
    out_idx=[-1],
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
def native_sparse_attention(
    batch,
    heads,
    seq_len,  # Length of K/V sequences (context window size)
    dim,  # Embedding dimension per head
    scale=None,
    block_size=64,  # Tile size for attention computation
    groups=1,  # Grouped query attention (GQA) groups
    selected_blocks=16  # Number of blocks to select per attention head
):
    if scale is None:
        scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    # Modified shapes for inference (q has seq_len=1)a
    q_shape = [batch, 1, heads, dim]  # Changed seq_len to 1
    kv_shape = [batch, seq_len, head_kv, dim]
    block_indices_shape = [batch, 1, head_kv, selected_blocks]  # Changed seq_len to 1
    block_indices_dtype = "int32"
    dtype = "float16"
    accum_dtype = "float"
    block_S = block_size
    block_T = min(128, tilelang.math.next_power_of_2(dim))

    NK = tilelang.cdiv(dim, block_T)
    NV = tilelang.cdiv(dim, block_T)
    assert NK == 1, "The key dimension can not be larger than 256"

    S = selected_blocks
    G = groups
    BS = block_S
    BK = BV = block_T
    num_stages = 0
    threads = 32

    @T.prim_func
    def native_sparse_attention(
            Q: T.Tensor(q_shape, dtype),  # [batch, 1, heads, dim] 
            K: T.Tensor(kv_shape, dtype),  # [batch, seq_len, head_kv, dim]
            V: T.Tensor(kv_shape, dtype),  # Same shape as K
            BlockIndices: T.Tensor(block_indices_shape,
                                   block_indices_dtype),  # Selected block indices
            Output: T.Tensor(q_shape, dtype),  # Output attention tensor
    ):
        with T.Kernel(1, NV, batch * head_kv, threads=threads) as (bx, by, bz):
            # Shared memory allocations for tile storage
            Q_shared = T.alloc_shared([G, BK], dtype)  # Current query block
            K_shared = T.alloc_shared([BS, BK], dtype)  # Current key block
            V_shared = T.alloc_shared([BS, BV], dtype)  # Current value block
            O_shared = T.alloc_shared([G, BV], dtype)  # Output accumulator

            # Attention computation buffers
            acc_s = T.alloc_fragment([G, BS], accum_dtype)  # QK^T scores
            acc_s_cast = T.alloc_fragment([G, BS], dtype)  # Casted scores for softmax
            acc_o = T.alloc_fragment([G, BV], accum_dtype)  # Output accumulator
            scores_max = T.alloc_fragment([G], accum_dtype)
            scores_max_prev = T.alloc_fragment([G], accum_dtype)
            scores_scale = T.alloc_fragment([G], accum_dtype)
            scores_sum = T.alloc_fragment([G], accum_dtype)
            logsum = T.alloc_fragment([G], accum_dtype)

            i_v, i_bh = by, bz
            i_b, i_h = i_bh // head_kv, i_bh % head_kv

            NS = S
            # Copy Q for the single position
            T.copy(Q[i_b, 0, i_h * G:(i_h + 1) * G, :], Q_shared)  # Changed i_t to 0

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            # Main attention computation loop over selected blocks
            for i in T.Pipelined(NS, num_stages=num_stages):
                i_s = BlockIndices[i_b, 0, i_h, i] * BS  # Get block offset
                if i_s >= 0:  # Skip invalid/padding blocks
                    # Load current key block to shared memory
                    T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)

                    # Compute QK^T attention scores
                    T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)

                    # Online softmax with numerical stability
                    # 1. Compute max for scaling
                    # 2. Compute exponentials and sum
                    # 3. Maintain running logsum for normalization
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=True)

                    for i in T.Parallel(G):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(G, BS):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(G):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)

                    # Accumulate attention-weighted values
                    T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            # Final normalization and output
            for i, j in T.Parallel(G, BV):
                acc_o[i, j] /= logsum[i]  # Normalize by logsum
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[i_b, 0, i_h * G:(i_h + 1) * G,
                                    i_v * BV:(i_v + 1) * BV])  # Changed i_t to 0

    return native_sparse_attention


def main():
    B, SEQ_LEN, H, HQ, D, S, block_size, dtype = 2, 64, 1, 16, 16, 1, 32, torch.float16
    groups = HQ // H
    SEQ_LEN_Q = 1
    kernel = native_sparse_attention(
        batch=B,
        heads=HQ,
        seq_len=SEQ_LEN,
        dim=D,
        block_size=block_size,
        groups=HQ // H,
        selected_blocks=S,
    )

    Q = torch.randn((B, SEQ_LEN_Q, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
    K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
    V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)

    mask = torch.randint(0, 2, (B, SEQ_LEN, groups), device='cuda')
    DO = torch.randn((B, SEQ_LEN_Q, HQ, D), dtype=dtype, device='cuda')

    block_indices = torch.full((B, SEQ_LEN_Q, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
    for b in range(B):
        for t in range(SEQ_LEN_Q):
            for h in range(H):
                i_i = torch.randperm(max(1, (t // block_size)))[:S]
                block_indices[b, t, h, :len(i_i)] = i_i
    block_indices = block_indices.sort(-1)[0]
    block_counts = torch.randint(1, S + 1, (B, SEQ_LEN_Q, H), device='cuda')

    out = kernel(Q, K, V, block_indices.to(torch.int32))

    ref = naive_nsa_simple_inference(
        q=Q,
        k=K,
        v=V,
        block_indices=block_indices,
        block_counts=block_counts,
        block_size=block_size,
    )
    torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)


if __name__ == "__main__":
    main()