example_mla_decode_persistent.py 10.7 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from tilelang.carver.arch import driver
from einops import rearrange, einsum
import argparse


@tilelang.jit(
    out_idx=[6], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split):
    scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504  # log2(e)
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // kv_head_num
    VALID_BLOCK_H = min(block_H, kv_group_num)
    assert kv_head_num == 1, "kv_head_num must be 1"
    sm_num = driver.get_num_sms()

    @T.prim_func
    def main_split_persistent(
            Q: T.Tensor([batch, heads, dim], dtype),
            Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
            KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
            K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
        with T.Kernel(sm_num, threads=256) as (block_id):
            Q_shared = T.alloc_shared([block_H, dim], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
            KV_shared = T.alloc_shared([block_N, dim], dtype)
            K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
            # O_shared = T.alloc_shared([block_H, dim], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)
            po_local = T.alloc_fragment([dim], dtype)
            o_accum_local = T.alloc_fragment([dim], accum_dtype)
            lse_local_split = T.alloc_local([1], accum_dtype)
            lse_logsum_local = T.alloc_local([1], accum_dtype)
            lse_max_local = T.alloc_local([1], accum_dtype)
            scale_local = T.alloc_local([1], accum_dtype)

            T.annotate_layout({
                # O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                S_shared: tilelang.layout.make_swizzled_layout(S_shared),
                lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
            })
            T.use_swizzle(10)

            total_tiles = batch * (heads // min(block_H, kv_group_num)) * num_split
            waves = T.ceildiv(total_tiles, sm_num)
            for w in T.serial(waves):
                tile_id = sm_num * w + block_id
                bid = tile_id // ((heads // min(block_H, kv_group_num)) * num_split)
                hid = tile_id // num_split % (heads // min(block_H, kv_group_num))
                sid = tile_id % num_split
                cur_kv_head = hid // (kv_group_num // block_H)

                if bid < batch and hid * VALID_BLOCK_H < heads and sid < num_split:
                    T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_shared)
                    T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_pe_shared)
                    T.fill(acc_o, 0)
                    T.fill(logsum, 0)
                    T.fill(scores_max, -T.infinity(accum_dtype))

                    loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
                    for k in T.Pipelined(loop_range, num_stages=2):
                        kv_start = (seqlen_kv // num_split) * sid + k * block_N
                        kv_end = (seqlen_kv // num_split) * sid + (k + 1) * block_N
                        T.copy(KV[bid, kv_start:kv_end, cur_kv_head, :], KV_shared)
                        T.copy(K_pe[bid, kv_start:kv_end, cur_kv_head, :], K_pe_shared)
                        T.clear(acc_s)
                        T.gemm(
                            Q_shared,
                            KV_shared,
                            acc_s,
                            transpose_B=True,
                            policy=T.GemmWarpPolicy.FullCol)
                        T.gemm(
                            Q_pe_shared,
                            K_pe_shared,
                            acc_s,
                            transpose_B=True,
                            policy=T.GemmWarpPolicy.FullCol)
                        T.copy(scores_max, scores_max_prev)
                        T.fill(scores_max, -T.infinity(accum_dtype))
                        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                        for i in T.Parallel(block_H):
                            scores_scale[i] = T.exp2(scores_max_prev[i] * scale -
                                                     scores_max[i] * scale)
                        for i, j in T.Parallel(block_H, block_N):
                            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                        T.reduce_sum(acc_s, scores_sum, dim=1)
                        T.copy(acc_s, S_shared)
                        T.copy(S_shared, acc_s_cast)
                        for i in T.Parallel(block_H):
                            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                        for i, j in T.Parallel(block_H, dim):
                            acc_o[i, j] *= scores_scale[i]
                        T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
                    for i, j in T.Parallel(block_H, dim):
                        acc_o[i, j] /= logsum[i]
                    for i in T.Parallel(block_H):
                        logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
                    T.copy(logsum, glse[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, sid])
                    # T.copy(acc_o, O_shared)
                    T.copy(
                        acc_o, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
                                              sid, :])

            T.sync_grid()
            waves = T.ceildiv(heads * batch, sm_num)
            for w in T.serial(waves):
                tile_id = sm_num * w + block_id
                hid = tile_id // batch
                bid = tile_id % batch
                if bid < batch and hid < heads:
                    T.clear(lse_logsum_local)
                    T.clear(o_accum_local)
                    lse_max_local[0] = -T.infinity(accum_dtype)
                    for k in T.serial(num_split):
                        lse_max_local[0] = T.max(lse_max_local[0], glse[bid, hid, k])
                    for k in T.Pipelined(num_split, num_stages=1):
                        lse_local_split[0] = glse[bid, hid, k]
                        lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
                    lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
                    for k in T.serial(num_split):
                        for i in T.Parallel(dim):
                            po_local[i] = Output_partial[bid, hid, k, i]
                        lse_local_split[0] = glse[bid, hid, k]
                        scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
                        for i in T.Parallel(dim):
                            o_accum_local[i] += po_local[i] * scale_local[0]
                    for i in T.Parallel(dim):
                        Output[bid, hid, i] = o_accum_local[i]

    return main_split_persistent


def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
    #     """
    #     Inputs:
    #     - q (Tensor): [batch, heads, dim]
    #     - q_pe (Tensor): [batch, heads, pe_dim]
    #     - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
    #     - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
    #     - glse (Tensor): [batch, heads, num_split]
    #     - Output_partial (Tensor): [batch, heads, num_split, dim]
    #     Outputs:
    #     - output (Tensor): [batch, heads, dim]
    #     """
    dim = q.shape[-1]
    pe_dim = q_pe.shape[-1]
    num_head_groups = q.shape[1] // kv.shape[2]
    scale = (dim + pe_dim)**0.5
    q = rearrange(
        q, 'b (h g) d -> b g h d', g=num_head_groups)  # [batch_size, num_head_groups, groups, dim]

    q_pe = rearrange(
        q_pe, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, groups, pe_dim]

    kv = rearrange(kv, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]

    k_pe = rearrange(k_pe, 'b n h d -> b h n d')  # [batch_size, num_head_groups, groups, pe_dim]

    query = torch.concat([q, q_pe], dim=-1)
    key = torch.concat([kv, k_pe], dim=-1)

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, groups, seqlen_kv]

    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, groups, seqlen_kv]

    out = einsum(attention, kv,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, groups, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=128, help='batch size')
    parser.add_argument('--heads', type=int, default=128, help='q heads number')
    parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
    parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
    parser.add_argument('--dim', type=int, default=512, help='head dim')
    parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
    args = parser.parse_args()
    batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
    qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
    pv_flops = 2 * batch * heads * kv_ctx * dim
    total_flops = qk_flops + pv_flops
    BLOCK_N = 64
    BLOCK_H = 64
    num_split = 2

    kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split)
    print(kernel.get_kernel_source())
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
    profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    latency = profiler.do_bench(warmup=500)
    print(f"Latency: {latency} ms")
    print(f"TFlops: {total_flops / latency * 1e-9} TFlops")


if __name__ == "__main__":
    main()