utils_quant.py 8.85 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# pylint: disable=missing-docstring, invalid-name
"""This is modified from https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/main/utils_quant.py to work with BitBLAS."""

import torch
from torch import nn
from bitblas.cache import global_operator_cache, get_database_path
from bitblas import Matmul, MatmulConfig
from bitblas import auto_detect_nvidia_target
from logging import getLogger

logger = getLogger(__name__)
BITBLAS_TARGET = auto_detect_nvidia_target()
BITBLAS_DATABASE_PATH = get_database_path()


def weight_quant(weight, num_bits=1):
    dtype = weight.dtype
    weight = weight.float()
    s = 1 / weight.abs().mean().clamp(min=1e-5)
    result = (weight * s).round().clamp(-1, 1) / s
    return result.type(dtype)


def activation_quant(x, num_bits=8):
    dtype = x.dtype
    x = x.float()
    Qn = -(2**(num_bits - 1))
    Qp = 2**(num_bits - 1) - 1
    s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
    result = (x * s).round().clamp(Qn, Qp) / s
    return result.type(dtype)


class BitLinearBitBLAS(nn.Module):

    def __init__(
        self,
        in_features: int,
        out_features: int,
        weight_bits=1,
        input_bits=8,
        **kwargs,
    ):
        super().__init__()
        """
        RMSNorm is placed outside BitLinear
        """
        self.in_features = in_features
        self.out_features = out_features
        self.weight_bits = weight_bits
        self.input_bits = input_bits
        matmul_config = MatmulConfig(
            N=self.out_features,  # N dimension
            K=self.in_features,  # K dimension
            A_dtype="int8",  # activation A dtype
            W_dtype="int2",  # weight W dtype
            accum_dtype="int32",  # accumulation dtype
            out_dtype="float32",  # output dtype
            layout="nt",  # matrix layout, "nt" indicates the layout of A is non-transpose and the layout of W is transpose
            with_bias=False,  # bias
            # configs for weight only quantization
            group_size=None,  # setting for grouped quantization
            with_scaling=False,  # setting for scaling factor
            with_zeros=False,  # setting for zeros
            zeros_mode=None,  # setting for how to calculating zeros
        )
        ENABLE_TUNING = True
        self.bitblas_matmul = self._get_or_create_bitblas_operator(matmul_config, ENABLE_TUNING)

        self.format = "bitnet"
        self.Qp = 2**(self.input_bits - 1) - 1

    def _get_or_create_bitblas_operator(self, config, enable_tuning):
        if global_operator_cache.size() == 0:
            global_operator_cache.load_from_database(BITBLAS_DATABASE_PATH, BITBLAS_TARGET)
            logger.info(f"Loaded {global_operator_cache.size()} operators from database.")

        bitblas_matmul = global_operator_cache.get(config)
        if bitblas_matmul is None:
            # should disable tuning for the first time because we may require loading bitblas operator from database.
            bitblas_matmul = Matmul(config, target=BITBLAS_TARGET, enable_tuning=False)
            if enable_tuning:
                bitblas_matmul.hardware_aware_finetune(topk=20)
                global_operator_cache.add(config, bitblas_matmul)
                global_operator_cache.save_into_database(BITBLAS_DATABASE_PATH, BITBLAS_TARGET)
                print("BitBLAS Tuning done, appended operator to global_operator_cache.")
            else:
                print("BitBLAS Operator created.")
        else:
            print("BitBLAS Operator found in global_operator_cache.")
        return bitblas_matmul

    def replace_weight_param_with_qweight(self):
        if hasattr(self, "weight"):
            del self.weight
        quant_weight = torch.empty(self.bitblas_matmul.retrieve_weight_shape())
        self.qweight = nn.Parameter(quant_weight, requires_grad=False)
        self.format = "bitblas"

    @classmethod
    def from_bit_linear(cls, bitlinear, weight_group=1):
        bitblas_linear = cls(
            bitlinear.in_features, bitlinear.out_features, weight_bits=1, input_bits=8)
        sw, qweight = bitblas_linear.create_bitblas_weights(bitlinear.weight, weight_group)
        bitblas_linear.register_buffer("qweight", qweight)
        bitblas_linear.register_buffer("sw", sw)
        if bitlinear.bias is not None:
            bitblas_linear.register_buffer("bias", bitlinear.bias)
        else:
            bitblas_linear.bias = None
        return bitblas_linear

    def create_bitblas_weights(self, weight, weight_group=1):
        if weight_group:
            hidden_size = weight.size(0)
            group_size = hidden_size // weight_group

            sw_list = []
            qweight_list = []

            for i in range(weight_group):
                start_idx = i * group_size
                end_idx = (i + 1) * group_size

                sw = 1 / weight[start_idx:end_idx].abs().mean().clamp(min=1e-5)
                sw_list.append(sw.repeat(group_size))

                qweight = self.weight_quant(weight[start_idx:end_idx]).detach()
                qweight_list.append(qweight)

            sw = torch.cat(sw_list, dim=0)
            qweight = torch.cat(qweight_list, dim=0)
        else:
            sw = 1 / weight.abs().mean().clamp(min=1e-5)
            qweight = self.weight_quant(weight).detach()
        qweight = self.bitblas_matmul.transform_weight(qweight)
        qweight = nn.Parameter(qweight, requires_grad=False)
        return sw, qweight

    def post_process_weights(self):
        sw = 1 / self.weight.abs().mean().clamp(min=1e-5)
        self.sw = sw
        quant_weight = self.weight_quant(self.weight).detach()
        quant_weight = self.bitblas_matmul.transform_weight(quant_weight)
        # remove self.weight and replace it with quant_weight
        if hasattr(self, "weight"):
            del self.weight
        self.qweight = nn.Parameter(quant_weight, requires_grad=False)
        self.format = "bitblas"

    @staticmethod
    def weight_quant(weight):
        weight = weight.float()
        s = 1 / weight.abs().mean().clamp(min=1e-5)
        result = (weight * s).round().clamp(-1, 1)
        return result.type(torch.int8)

    @torch.compile
    def activation_quant(self, x, num_bits=8):
        x = x.float()
        Qn = -(2**(num_bits - 1))
        Qp = 2**(num_bits - 1) - 1
        s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
        result = (x * s).round().clamp(Qn, Qp)
        return result.type(torch.int8), s

    @torch.compile
    def post_quant_process(self, input, si, sw):
        out = input / si
        out = out / sw
        out = out.half()
        return out

    # for the correctness evaluation.
    def native_forward(self, input):
        quant_input = (input + (activation_quant(input, self.input_bits) - input).detach())
        quant_weight = (
            self.weight + (weight_quant(self.weight, self.weight_bits) - self.weight).detach())

        out = nn.functional.linear(quant_input, quant_weight)
        if self.bias is not None:
            out += self.bias.view(1, -1).expand_as(out)
        return out

    def forward_fp32_simulated(self, input):
        quant_input, si = self.activation_quant(input, self.input_bits).detach()
        quant_weight = self.weight_quant(self.weight).detach()

        fp32_simulated_input = quant_input.float()
        fp32_simulated_weight = quant_weight.float()
        fp32_simulated_out = nn.functional.linear(fp32_simulated_input, fp32_simulated_weight)

        sw = 1 / self.weight.abs().mean().clamp(min=1e-5)
        # if / (si * sw) it will inf in some cases
        out = fp32_simulated_out / si
        out = out / sw
        out = out.half()
        if self.bias is not None:
            out += self.bias.view(1, -1).expand_as(out)
        return out

    def forward(self, input):
        # return self.forward_fp32_simulated(input)
        quant_input, si = self.activation_quant(input, self.input_bits)
        fp32_out = self.bitblas_matmul(quant_input, self.qweight)
        sw = self.sw
        # if / (si * sw) it will inf in some cases
        out = self.post_quant_process(fp32_out, si, sw)

        if self.bias is not None:
            out += self.bias.view(1, -1).expand_as(out)
        return out


# Naive BitLinear from HuggingFace
class BitLinear(nn.Linear):

    def __init__(self, *kargs, weight_bits=1, input_bits=8, **kwargs):
        super(BitLinear, self).__init__(*kargs, **kwargs)
        """
        RMSNorm is placed outside BitLinear
        """
        self.weight_bits = weight_bits
        self.input_bits = input_bits

    def forward(self, input):

        quant_input = input + (activation_quant(input, self.input_bits) - input).detach()
        quant_weight = self.weight + (weight_quant(self.weight, self.weight_bits) -
                                      self.weight).detach()

        out = nn.functional.linear(quant_input, quant_weight)
        if self.bias is not None:
            out += self.bias.view(1, -1).expand_as(out)

        return out