example_amd_flash_attn_fwd.py 9.11 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
from tilelang.primitives.gemm.base import GemmWarpPolicy
import itertools
import argparse
from functools import partial


def ref_program(Q, K, V, is_causal, groups=1):
    assert Q.size(
        2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(
        2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


def get_configs():
    """Generates configurations for the autotuner, tailored for FA-2 style parallelism."""
    block_M = [32, 64, 128, 256]
    block_N = [32, 64, 128, 256]
    threads = [128, 256, 512]
    num_split_q = [64, 128, 256]
    num_stages = [0, 1]
    enable_rasterization = [True]
    k_pack = [2]
    panel_size = [7, 8]
    qk_coalesced_width = [8]
    v_coalesced_width = [4]

    valid_configs = []

    for m, n, s, t, stages, r, k, p, qkw, vw in itertools.product(block_M, block_N, num_split_q,
                                                                  threads, num_stages,
                                                                  enable_rasterization, k_pack,
                                                                  panel_size, qk_coalesced_width,
                                                                  v_coalesced_width):
        valid_configs.append({
            "block_M": m,
            "block_N": n,
            "num_split_q": s,
            "threads": t,
            "num_stages": stages,
            "enable_rasterization": r,
            "k_pack": k,
            "panel_size": p,
            "qk_coalesced_width": qkw,
            "v_coalesced_width": vw,
        })
    return valid_configs


@tilelang.autotune(configs=get_configs(), cache_input_tensors=True)
@tilelang.jit(out_idx=[3])
def fast_flashattn(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
    panel_size: int,
    qk_coalesced_width: int,
    v_coalesced_width: int,
):
    scale = (1.0 / dim)**0.5
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    vec_size = qk_coalesced_width
    v_vec_size = v_coalesced_width

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
    ):
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
            T.use_swizzle(panel_size, enable=enable_rasterization)

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx = T.alloc_var("int32")
            bx = b_split

            with T.While(bx < num_q_blocks):
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)
                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

                current_bx = bx
                q_block_offset = current_bx * block_M

                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                # Use register fragment for P instead of shared memory to reduce LDS usage
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)

                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                m_prev = T.alloc_fragment([block_M], accum_dtype)
                scale_factor = T.alloc_fragment([block_M], accum_dtype)

                T.copy(
                    Q[bz, q_block_offset:q_block_offset + block_M, by, :],
                    Q_shared,
                    coalesced_width=vec_size)

                loop_end_k = T.ceildiv(q_block_offset + block_M,
                                       block_N) if is_causal else T.ceildiv(seq_len, block_N)

                row_sum = T.alloc_fragment([block_M], accum_dtype)

                for k in T.Pipelined(loop_end_k, num_stages=num_stages):
                    kv_idx = k * block_N

                    T.copy(
                        K[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        K_shared,
                        coalesced_width=vec_size)
                    T.copy(
                        V[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        V_shared,
                        coalesced_width=v_vec_size)

                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
                            acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        k_pack=k_pack,
                        policy=GemmWarpPolicy.FullRow,
                    )

                    T.copy(m_i, m_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)

                    for i in T.Parallel(block_M):
                        sf = T.exp(m_prev[i] * scale - m_i[i] * scale)
                        l_i[i] *= sf
                        scale_factor[i] = sf

                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.exp(acc_s[i, j] * scale - m_i[i] * scale)

                    T.reduce_sum(acc_s, row_sum, dim=1)
                    for i in T.Parallel(block_M):
                        l_i[i] += row_sum[i]

                    # Cast acc_s (accum_dtype) to dtype in registers and directly GEMM with V
                    T.copy(acc_s, acc_s_cast)

                    T.gemm(acc_s_cast, V_shared, acc_o, policy=GemmWarpPolicy.FullRow)

                l_inv = T.alloc_fragment([block_M], accum_dtype)
                for i in T.Parallel(block_M):
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                for i, j in T.Parallel(block_M, dim):
                    Output[bz, q_block_offset + i, by, j] = acc_o[i, j] * l_inv[i]

                bx = current_bx + num_split_q

    return main


def main(batch: int = 1,
         heads: int = 8,
         seq_len: int = 4096,
         dim: int = 128,
         is_causal: bool = False,
         groups: int = 1):

    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

    print("Starting autotuning for FlashAttention-V2...")
    kernel = fast_flashattn(batch, heads, seq_len, dim, is_causal, groups=groups)
    print(f"Autotuning finished. Best Configuration: {kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("All checks pass.")

    latency = profiler.do_bench(ref_program_processed, warmup=100)
    print(f"Reference (PyTorch): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops")

    latency = profiler.do_bench(warmup=100)
    print(
        f"Fast Flash Attention V2 (Tile-lang): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=8, help='heads')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)