example_amd_flash_attn_bwd.py 22.5 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
from tilelang.primitives.gemm.base import GemmWarpPolicy
import itertools
import argparse
from functools import partial
import numpy as np
import time


def ref_program(Q, K, V, is_causal, groups=1):
    assert Q.size(
        2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(
        2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
    dim = Q.size(-1)
    K_ref = K.repeat_interleave(groups, dim=2)
    V_ref = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K_ref)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V_ref)
    lse = torch.logsumexp(scores, dim=-1).float()
    return output, lse


def get_fwd_configs():
    block_M = [32, 64, 128, 256]
    block_N = [32, 64, 128, 256]
    threads = [128, 256, 512]
    num_split_q = [64, 128, 256]
    num_stages = [0, 1]
    enable_rasterization = [True]
    k_pack = [2]
    panel_size = [7, 8, 9, 10]
    qk_coalesced_width = [8]
    v_coalesced_width = [4]

    valid_configs = []

    for m, n, s, t, stages, r, k, p, qkw, vw in itertools.product(block_M, block_N, num_split_q,
                                                                  threads, num_stages,
                                                                  enable_rasterization, k_pack,
                                                                  panel_size, qk_coalesced_width,
                                                                  v_coalesced_width):
        valid_configs.append({
            "block_M": m,
            "block_N": n,
            "num_split_q": s,
            "threads": t,
            "num_stages": stages,
            "enable_rasterization": r,
            "k_pack": k,
            "panel_size": p,
            "qk_coalesced_width": qkw,
            "v_coalesced_width": vw,
        })
    return valid_configs


@tilelang.autotune(configs=get_fwd_configs(), cache_input_tensors=True)
@tilelang.jit(out_idx=[3, 4])
def fast_flashattn(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
    panel_size: int,
    qk_coalesced_width: int,
    v_coalesced_width: int,
):
    scale = (1.0 / dim)**0.5
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    vec_size = qk_coalesced_width
    v_vec_size = v_coalesced_width

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
            LSE: T.Tensor([batch, heads, seq_len], accum_dtype),
    ):
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
            T.use_swizzle(panel_size, enable=enable_rasterization)

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx_loop_var = T.alloc_var("int32")
            bx_loop_var = b_split

            with T.While(bx_loop_var < num_q_blocks):
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)

                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

                current_bx = bx_loop_var
                q_block_offset = current_bx * block_M

                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)

                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                m_prev = T.alloc_fragment([block_M], accum_dtype)
                scale_factor = T.alloc_fragment([block_M], accum_dtype)

                T.copy(
                    Q[bz, q_block_offset:q_block_offset + block_M, by, :],
                    Q_shared,
                    coalesced_width=vec_size)

                loop_end_k = (
                    T.ceildiv(q_block_offset +
                              block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))

                row_sum = T.alloc_fragment([block_M], accum_dtype)

                for k in T.Pipelined(loop_end_k, num_stages=num_stages):
                    kv_idx = k * block_N

                    T.copy(
                        K[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        K_shared,
                        coalesced_width=vec_size)
                    T.copy(
                        V[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        V_shared,
                        coalesced_width=v_vec_size)

                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
                            acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        k_pack=k_pack,
                        policy=GemmWarpPolicy.FullRow,
                    )

                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = acc_s[i, j] * scale

                    T.copy(m_i, m_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)

                    for i in T.Parallel(block_M):
                        if m_prev[i] == -T.infinity(accum_dtype):
                            scale_factor[i] = 0.0
                        else:
                            scale_factor[i] = T.exp(m_prev[i] - m_i[i])

                        l_i[i] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, block_N):
                        if acc_s[i, j] == -T.infinity(acc_s.dtype):
                            acc_s[i, j] = 0.0
                        else:
                            acc_s[i, j] = T.exp(acc_s[i, j] - m_i[i])

                    T.reduce_sum(acc_s, row_sum, dim=1)
                    for i in T.Parallel(block_M):
                        l_i[i] += row_sum[i]

                    T.copy(acc_s, acc_s_cast)

                    T.gemm(acc_s_cast, V_shared, acc_o, policy=GemmWarpPolicy.FullRow)

                l_inv = T.alloc_fragment([block_M], accum_dtype)
                for i in T.Parallel(block_M):
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                for i, j in T.Parallel(block_M, dim):
                    Output[bz, q_block_offset + i, by, j] = acc_o[i, j] * l_inv[i]

                for i in T.Parallel(block_M):
                    if q_block_offset + i < seq_len:
                        lse_val = T.if_then_else(l_i[i] > 0,
                                                 T.log(l_i[i]) + m_i[i], -T.infinity(accum_dtype))
                        LSE[bz, by, q_block_offset + i] = lse_val

                bx_loop_var = current_bx + num_split_q

    return main


def get_bwd_configs():
    block_M = [16, 32, 64, 128, 256]
    block_N = [16, 32, 64, 128, 256]
    threads = [64, 128, 256, 512, 1024]
    num_stages = [0, 1, 2]
    enable_rasterization = [True]
    panel_size = [7, 8, 9, 10]

    configs = []
    for m, n, stages, t, r, p in itertools.product(block_M, block_N, num_stages, threads,
                                                   enable_rasterization, panel_size):
        configs.append({
            "block_M": m,
            "block_N": n,
            "num_stages": stages,
            "threads": t,
            "enable_rasterization": r,
            "panel_size": p,
        })

    return configs


@tilelang.jit(out_idx=[2])
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(O: T.Tensor(shape, dtype), dO: T.Tensor(shape, dtype),
                       Delta: T.Tensor([batch, heads, seq_len], accum_dtype)):
        with T.Kernel(batch, heads, T.ceildiv(seq_len, blk)) as (bz, bx, by):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


@tilelang.autotune(configs=get_bwd_configs(), cache_input_tensors=True)
@tilelang.jit
def flashattn_bwd(batch, heads, seq_len, dim, is_causal, groups, block_M: int, block_N: int,
                  num_stages: int, threads: int, enable_rasterization: bool, panel_size: int):
    sm_scale = (1.0 / dim)**0.5
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd_kernel(Q: T.Tensor(q_shape,
                                     dtype), K: T.Tensor(kv_shape,
                                                         dtype), V: T.Tensor(kv_shape, dtype),
                         dO: T.Tensor(q_shape, dtype), lse: T.Tensor([batch, heads, seq_len],
                                                                     accum_dtype),
                         Delta: T.Tensor([batch, heads, seq_len],
                                         accum_dtype), dQ: T.Tensor(q_shape, accum_dtype),
                         dK: T.Tensor(kv_shape, accum_dtype), dV: T.Tensor(kv_shape, accum_dtype)):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            T.use_swizzle(panel_size, enable=enable_rasterization)

            K_shared = T.alloc_shared([block_M, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            q_shared = T.alloc_shared([block_N, dim], dtype)
            do_shared = T.alloc_shared([block_N, dim], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta_shared = T.alloc_shared([block_N], accum_dtype)
            ds_shared = T.alloc_shared([block_M, block_N], dtype)

            p_cast = T.alloc_fragment([block_M, block_N], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            P_acc = T.alloc_fragment([block_M, block_N], accum_dtype)
            dP = T.alloc_fragment([block_M, block_N], accum_dtype)

            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)

            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)

            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q_shared)
                T.clear(qkT)

                T.gemm(K_shared, q_shared, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)

                for i, j in T.Parallel(block_M, block_N):
                    P_acc[i, j] = T.exp(qkT[i, j] * sm_scale - lse_shared[j])

                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        P_acc[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j,
                                                     P_acc[i, j], 0.0)

                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do_shared)
                T.clear(dP)

                T.gemm(V_shared, do_shared, dP, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(P_acc, p_cast)
                T.gemm(p_cast, do_shared, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta_shared)

                for i, j in T.Parallel(block_M, block_N):
                    p_cast[i, j] = P_acc[i, j] * (dP[i, j] - delta_shared[j]) * sm_scale

                T.gemm(p_cast, q_shared, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(p_cast, ds_shared)
                T.clear(dq)
                T.gemm(ds_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim):
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])

            for i, j in T.Parallel(block_M, dim):
                T.atomic_add(dV[bz, by * block_M + i, bx // groups, j], dv[i, j])
                T.atomic_add(dK[bz, by * block_M + i, bx // groups, j], dk[i, j])

    return flash_bwd_kernel


@tilelang.jit(out_idx=[1])
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(dQ_in: T.Tensor(shape, accum_dtype), dQ_out: T.Tensor(shape, dtype)):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.copy(
                dQ_in[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


def debug_tensor_comparison(tensor1, tensor2, name, rtol=1e-3, atol=1e-3):
    print(f"\n=== {name} Comparison ===")
    print(f"Shape: {tensor1.shape} vs {tensor2.shape}")
    print(f"Data type: {tensor1.dtype} vs {tensor2.dtype}")
    print(f"Device: {tensor1.device} vs {tensor2.device}")

    diff = torch.abs(tensor1 - tensor2)
    max_diff = diff.max().item()
    mean_diff = diff.mean().item()
    std_diff = diff.std().item()

    print(f"Max difference: {max_diff:.6f}")
    print(f"Mean difference: {mean_diff:.6f}")
    print(f"Difference std: {std_diff:.6f}")

    if max_diff > atol:
        max_idx = torch.argmax(diff)
        max_idx = np.unravel_index(max_idx.cpu().numpy(), tensor1.shape)
        print(f"Max difference position: {max_idx}")
        print(f"Value1: {tensor1[max_idx].item():.6f}, Value2: {tensor2[max_idx].item():.6f}")

    nan_count1 = torch.isnan(tensor1).sum().item()
    nan_count2 = torch.isnan(tensor2).sum().item()
    inf_count1 = torch.isinf(tensor1).sum().item()
    inf_count2 = torch.isinf(tensor2).sum().item()

    print(f"NaN count: {nan_count1} vs {nan_count2}")
    print(f"Inf count: {inf_count1} vs {inf_count2}")

    relative_diff = diff / (torch.abs(tensor2) + 1e-8)
    max_relative_diff = relative_diff.max().item()
    mean_relative_diff = relative_diff.mean().item()

    print(f"Max relative difference: {max_relative_diff:.6f}")
    print(f"Mean relative difference: {mean_relative_diff:.6f}")

    close = torch.allclose(tensor1, tensor2, rtol=rtol, atol=atol)
    print(f"Within tolerance (rtol={rtol}, atol={atol}): {close}")

    return close, max_diff, mean_diff


def benchmark_function(func, *args, warmup=10, repeat=100):
    for _ in range(warmup):
        func(*args)

    if torch.cuda.is_available():
        torch.cuda.synchronize()

    times = []
    for _ in range(repeat):
        start = time.time()
        func(*args)
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        end = time.time()
        times.append((end - start) * 1000)

    return np.median(times)


def main(batch: int = 1,
         heads: int = 8,
         seq_len: int = 4096,
         dim: int = 128,
         is_causal: bool = False,
         groups: int = 1):

    device = "cuda"
    dtype = torch.float16

    torch.manual_seed(42)
    torch.cuda.manual_seed(42)

    print(
        f"Test configuration: batch={batch}, heads={heads}, seq_len={seq_len}, dim={dim}, is_causal={is_causal}, groups={groups}"
    )

    flops_per_gemm = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 5 * flops_per_gemm

    print(f"Total FLOPs: {total_flops / 1e12:.2f} TFlops")

    q = torch.randn(batch, seq_len, heads, dim, device=device, dtype=dtype)
    k = torch.randn(batch, seq_len, heads // groups, dim, device=device, dtype=dtype)
    v = torch.randn(batch, seq_len, heads // groups, dim, device=device, dtype=dtype)
    dO = torch.randn_like(q)

    print("Starting autotuning for Fast FlashAttention-V2 Forward Pass...")
    fwd_kernel = fast_flashattn(batch, heads, seq_len, dim, is_causal, groups)
    if fwd_kernel is None or fwd_kernel.config is None:
        print("Forward pass auto-tuning failed.")
        return
    print(f"Autotuning finished. Best Forward Configuration: {fwd_kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = fwd_kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("Forward pass is correct.")

    o_tl, lse_tl = fwd_kernel(q, k, v)

    bwd_prep = flashattn_bwd_preprocess(batch, heads, seq_len, dim)
    delta_tl = bwd_prep(o_tl, dO)

    print("\nStarting FlashAttention-V2 backward pass autotuning...")
    bwd_kernel = flashattn_bwd(batch, heads, seq_len, dim, is_causal, groups)
    if bwd_kernel is None or bwd_kernel.config is None:
        print("Backward pass autotuning failed.")
        return
    print(f"Autotuning completed. Best backward pass configuration: {bwd_kernel.config}")

    dQ_accum = torch.zeros_like(q, dtype=torch.float32)
    dK_tl = torch.zeros_like(k, dtype=torch.float32)
    dV_tl = torch.zeros_like(v, dtype=torch.float32)

    bwd_kernel(q, k, v, dO, lse_tl, delta_tl, dQ_accum, dK_tl, dV_tl)

    post_kernel = flashattn_bwd_postprocess(batch, heads, seq_len, dim)
    dQ_tl = post_kernel(dQ_accum)

    q_ref = q.clone().detach().requires_grad_()
    k_ref = k.clone().detach().requires_grad_()
    v_ref = v.clone().detach().requires_grad_()

    o_ref, _ = ref_program(q_ref, k_ref, v_ref, is_causal, groups)
    o_ref.backward(dO)

    print("Verifying backward pass correctness...")
    dq_close, dq_max_diff, dq_mean_diff = debug_tensor_comparison(
        dQ_tl, q_ref.grad, "dQ", rtol=0.05, atol=0.05)
    if dq_close:
        print("dQ is correct.")
    else:
        print("dQ mismatch detected.")

    dk_close, dk_max_diff, dk_mean_diff = debug_tensor_comparison(
        dK_tl.to(torch.float16), k_ref.grad, "dK", rtol=0.05, atol=0.05)
    if dk_close:
        print("dK is correct.")
    else:
        print("dK mismatch detected.")

    dv_close, dv_max_diff, dv_mean_diff = debug_tensor_comparison(
        dV_tl.to(torch.float16), v_ref.grad, "dV", rtol=0.05, atol=0.05)
    if dv_close:
        print("dV is correct.")
    else:
        print("dV mismatch detected.")

    print("\n=== Performance Benchmarking ===")

    def run_reference_fwd_bwd():
        q_ref_bench = q.clone().detach().requires_grad_()
        k_ref_bench = k.clone().detach().requires_grad_()
        v_ref_bench = v.clone().detach().requires_grad_()

        o_ref_bench, _ = ref_program(q_ref_bench, k_ref_bench, v_ref_bench, is_causal, groups)

        o_ref_bench.backward(dO)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

    ref_latency = benchmark_function(run_reference_fwd_bwd, warmup=10, repeat=100)
    print(
        f"Reference PyTorch Forward+Backward: {ref_latency:.2f} ms | {total_flops / ref_latency * 1e-9:.2f} TFlops"
    )

    def run_complete_fwd_bwd():
        o_tl_bench, lse_tl_bench = fwd_kernel(q, k, v)

        delta_tl_bench = bwd_prep(o_tl_bench, dO)

        dQ_bench = torch.zeros_like(q, dtype=torch.float32)
        dK_bench = torch.zeros_like(k, dtype=torch.float32)
        dV_bench = torch.zeros_like(v, dtype=torch.float32)
        bwd_kernel(q, k, v, dO, lse_tl_bench, delta_tl_bench, dQ_bench, dK_bench, dV_bench)

        post_kernel(dQ_bench)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

    tile_latency = benchmark_function(run_complete_fwd_bwd, warmup=10, repeat=100)
    print(
        f"Complete Flash Attention V2 Forward+Backward (Tile-lang): {tile_latency:.2f} ms | {total_flops / tile_latency * 1e-9:.2f} TFlops"
    )

    speedup = ref_latency / tile_latency
    print(f"Speedup: {speedup:.2f}x")

    print("Forward output: Passed")
    print(f"dQ: {'Passed' if dq_close else 'Failed'} (Max diff: {dq_max_diff:.6f})")
    print(f"dK: {'Passed' if dk_close else 'Failed'} (Max diff: {dk_max_diff:.6f})")
    print(f"dV: {'Passed' if dv_close else 'Failed'} (Max diff: {dv_max_diff:.6f})")

    if all([dq_close, dk_close, dv_close]):
        print("All checks passed!")
    else:
        print("Some checks failed, may need further debugging.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=8, help='heads')
    parser.add_argument('--seq_len', type=int, default=1024, help='sequence length')
    parser.add_argument('--dim', type=int, default=64, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    args = parser.parse_args()

    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)