benchmark_triton_block_sparse_fmha.py 7.93 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# ruff: noqa
import math
import torch

import triton
import triton.language as tl
from tilelang.profiler import do_bench


def is_hip():
    return False


def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len],
                            False,
                            dtype=torch.bool,
                            device=x.device)
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
    dense_mask = x > threshold
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


@triton.jit
def _fwd_kernel_inner(
    acc,
    l_i,
    m_i,
    q,
    k_block_col_idx,
    block_mask_ptr,
    k_ptrs,
    v_ptrs,
    offs_m,
    offs_n,
    stride_kt,
    stride_vt,
    stride_bmask_n,
    sm_scale,
    seqlen_k,
    past_len,
    LAST_K_BLOCK: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):

    mask_val = tl.load(block_mask_ptr + k_block_col_idx * stride_bmask_n)

    if mask_val == True:
        start_n = k_block_col_idx * BLOCK_N
        # -- compute qk ----

        k = tl.load(k_ptrs + start_n * stride_kt)

        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k)

        qk *= sm_scale

        # the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
        if LAST_K_BLOCK:
            qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0,
                           float('-inf'))

        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk -= m_ij[:, None]
        p = tl.exp(qk)
        l_ij = tl.sum(p, 1)
        alpha = tl.exp(m_i - m_ij)
        l_i = l_i * alpha + l_ij
        acc = acc * alpha[:, None]

        # update acc
        v = tl.load(v_ptrs + start_n * stride_vt)

        p = p.to(v.type.element_ty)

        acc += tl.dot(p, v)
        # update m_i and l_i
        m_i = m_ij
    return acc, l_i, m_i


@triton.jit
def _fwd_kernel(
    Q,
    K,
    V,
    sm_scale,
    block_mask_ptr,
    Out,
    stride_qz,
    stride_qh,
    stride_qm,
    stride_qd,
    stride_kz,
    stride_kh,
    stride_kn,
    stride_kd,
    stride_vz,
    stride_vh,
    stride_vn,
    stride_vd,
    stride_bmz,
    stride_bmh,
    stride_bmm,
    stride_bmn,
    stride_oz,
    stride_oh,
    stride_om,
    stride_od,
    H,
    N_CTX,
    PAST_LEN,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr,
):
    Q_LEN = N_CTX - PAST_LEN
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    off_h = off_hz % H
    off_z = off_hz // H
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    block_mask_ptr += off_z * stride_bmz + off_h * stride_bmh

    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_DMODEL)
    off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
    # off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
    off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
    off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
    # Initialize pointers to Q, K, V
    q_ptrs = Q + off_q
    k_ptrs = K + off_k
    v_ptrs = V + off_v
    mask_ptrs = block_mask_ptr + start_m * stride_bmm

    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)

    q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)

    k_block_start = 0
    k_block_end = tl.cdiv((start_m + 1) * BLOCK_M, BLOCK_N)

    # loop over k, v and update accumulator
    for col_idx in range(k_block_start, k_block_end):
        acc, l_i, m_i = _fwd_kernel_inner(
            acc,
            l_i,
            m_i,
            q,
            col_idx,
            mask_ptrs,
            k_ptrs,
            v_ptrs,
            offs_m,
            offs_n,
            stride_kn,
            stride_vn,
            stride_bmn,
            sm_scale,
            N_CTX,
            PAST_LEN,
            col_idx == k_block_end - 1,
            BLOCK_M,
            BLOCK_N,
        )

    m_i += tl.math.log(l_i)
    l_recip = 1 / l_i[:, None]
    acc = acc * l_recip
    acc = acc.to(Out.dtype.element_ty)

    off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[
        None, :] * stride_od
    out_ptrs = Out + off_o
    tl.store(out_ptrs, acc, mask=offs_m[:, None] < N_CTX)


def _forward(ctx,
             q,
             k,
             v,
             block_sparse_mask,
             sm_scale,
             BLOCK_M=64,
             BLOCK_N=64,
             num_warps=None,
             num_stages=1,
             out=None):

    assert q.shape[-1] == k.shape[-1] == v.shape[-1]
    assert k.shape[2] == v.shape[2]
    o = out if out is not None else torch.empty_like(q).contiguous()
    grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])

    assert q.shape[-1] in [64, 128]
    BLOCK_DMODEL = q.shape[-1]

    if is_hip():
        num_warps, num_stages = 8, 1
    else:
        num_warps, num_stages = 4, 2

    N_CTX = k.shape[2]
    PAST_LEN = N_CTX - q.shape[2]

    H = q.shape[1]

    _fwd_kernel[grid](
        q,
        k,
        v,
        sm_scale,
        block_sparse_mask,
        o,
        *q.stride(),
        *k.stride(),
        *v.stride(),
        *block_sparse_mask.stride(),
        *o.stride(),
        H,
        N_CTX,
        PAST_LEN,
        BLOCK_M,
        BLOCK_N,
        BLOCK_DMODEL,
        num_warps=num_warps,
        num_stages=num_stages,
    )

    return o


class _sparse_attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, block_sparse_dense, sm_scale):
        # shape constraints
        return _forward(ctx, q, k, v, block_sparse_dense, sm_scale)

    @staticmethod
    def backward(ctx, do):
        # No gradient propagation.
        raise NotImplementedError("It does not support gradient propagation yet")
        return None, None, None, None, None


block_sparse_triton_fn = _sparse_attention.apply


def benchmark_topk_sparse_attention():
    from benchmark_configs import configs
    torch.manual_seed(0)

    # Config
    for BATCH, N_HEADS, SEQ_LEN, D_HEAD, TOPK, BLOCK in configs:

        # Create inputs
        q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
        k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
        v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)

        sm_scale = 1.0 / (D_HEAD**0.5)

        # Create sparse mask (downsampled to block level)
        downsample_factor = BLOCK
        downsample_len = math.ceil(SEQ_LEN / downsample_factor)
        x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len],
                           device='cuda',
                           dtype=torch.bfloat16)
        x_ds[:, :, :, 0] = 100
        block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)

        def benchmark_fn():
            # Compute reference
            # Expand block mask to full attention matrix
            block_sparse_triton_fn(q, k, v, block_mask, sm_scale)  # noqa: B023

        ref_latency = do_bench(
            benchmark_fn,
            warmup=10,
            rep=100,
        )
        print(
            f"BATCH: {BATCH}, N_HEADS: {N_HEADS}, SEQ_LEN: {SEQ_LEN}, D_HEAD: {D_HEAD}, TOPK: {TOPK}, BLOCK: {BLOCK}, ref_latency: {ref_latency}"
        )


if __name__ == "__main__":
    benchmark_topk_sparse_attention()